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1

Introduction

Psychometrics is the theory of educational and psychological measurement. It con-
cerns the measurement of knowledge, abilities, attitudes, and personality traits. Psy-
chometric measurement is primarily concerned with the study of differences between
individuals and between groups of individuals and has been used in psychology,
health and educational research.

In educational science methods for the comparison of student achievement, school
effectiveness and school differences can be based on school grades. However, the fact
that there is many variation among subjects, courses, teachers, instructors and grading
standards makes comparison of student’s achievement difficult. In this thesis, we
choose the Grade Point Average (GPA) on final examinations in the Netherlands as
an example. Students can choose different subjects for their final examination, so
they have different examination packages. Therefore, GPAs need a standardization
that accounts for the difficulty of subjects and the proficiency of students. Using this
data set as a guiding example, the problem is studied from a variety of perspectives.

There are many methods for standardization of GPA. They can be roughly di-
vided into two groups: observed score methods (Kelly, 1976; Elliot & Strenta, 1988;
Caulkins, Larkey & Wei, 1996; Smits, Mellenbergh & Vorst, 2002) and IRT-based
methods (Young, 1990, 1991; Johnson, 1997, 2003). This research mostly will be
focussed on IRT-based methods as they are more recent. IRT methods separate
the influence of the difficulty level of the examination subjects and the proficiency
level of the students via the introduction of item difficulty parameters and latent
proficiency parameters. First, it will be assumed that the grades on all subjects can be
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2 1. Introduction

explained using a unidimensional representation of proficiency of students. Usually
IRT models apply to discrete data (Rasch, 1960; Samejima, 1969; Bock, 1972; Lord,
1980; Masters, 1982). However, in some situations responses to the items may be
continuous. For example, in this study the original data are continuous examination
grades from 0 till 10 with two decimal places. IRT models for continuous responses
are outlined by such authors as Mellenbergh (1994), Moustaki (1996) and Skrondal
and Rabe-Hesketh (2004). The results obtained using unidimensional IRT models for
both continuous and discrete data will be compared with a well-established observed
score standardization method proposed by Kelly (1976).

In many situations, it may be plausible that there is more than one proficiency
factor underlying the grades. For instance, there might be a specific proficiency factor
for the science subjects and another one for language subjects. Therefore, it will be
investigated whether the introduction of an IRT model withQ proficiency dimensions
results in a better model for the grades. The IRT model is equivalent to a factor
analysis model. The correlation between the proficiency factors represent the extent
to which the proficiency dimensions are dependent. A high positive value for the
factor loading means that theq-th dimension is important for the subject, a value
close to zero means that the dimension does not play an important role. First a simple
structure of factor loadings will be introduced where each examination is loading
on one dimension only. The unidimensional subscales were searched for with the
program OPLM (Verhelst, Glas & Verstralen, 1995). The pattern of loadings is both
used for a categorical and a continuous interpretation of the data. Next, it will be
investigated whether some subjects may be loading on more than one dimension.
This more complicated factor structure will be investigated first for discrete data in
combination with marginal maximum likelihood (MML) estimation.

Up till this point, the interaction between the choice of an examination subject
and the proficiency parameters has not been taken into account. Implicitly, this
means that it is assumed that the missing data process can be ignored. That is, it
is assumed that the missing values (the grades on the examinations subjects that
were not taken) are missing at random and the parameters of the distribution of
the observed data and the distribution of the missing data indicators are distinct
(Rubin, 1976). Free choice of examination subjects may however lead to a stochastic
design that might violate the assumption of ignorability. If ignorability does not hold,
the inferences made using an IRT model ignoring the missing data process can be
severely biased (Bradlow & Thomas, 1998; Holman & Glas, 2005). Several authors
have shown that selection bias can be removed when the distribution of missing
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data indicator is modeled concurrently with the observed data using an IRT model
(Moustaki & O’Muircheartaigh, 2000; Moustaki & Knott, 2000; Holman & Glas,
2005). Therefore, the multidimensional IRT model was enhanced with a so-called
selection model for the missing data indicators.

As it was mentioned above, most IRT models pertain to discrete data. A unidi-
mensional IRT model for continuous item responses (Mellenbergh, 1994) has been
taken as a basis for developing an MML estimation and testing procedure for a
multidimensional IRT model for continuous data. The Lagrange Multiplier (LM)
test by Aitchison and Silvey (1958) is applied to evaluate the underlying assumptions
of subpopulation invariance, the form of the item response function, local stochastic
independence and the factor structure of the model. As an example of the proposed
methods an analysis of one of the biggest packages of total data set is presented.
Further, a number of simulation studies were carried out to assess the Type I error
rate and the power of the proposed LM tests.

The thus far outlined studies have been done in the framework of marginal max-
imum likelihood (MML). As an alternative, a Bayesian framework is considered.
A comprehensive estimation method using a Markov chain Monte Carlo (MCMC)
computational method is developed that can simultaneously estimate the parameters
for models for discrete and continuous responses for a broad class of models. The
method combines approaches by Shi and Lee (1998), Béguin and Glas (2001) and
Fox and Glas (2001,2002,2003). An analysis of the scaling of students’ scores on a
number of examination subjects is presented as an example of the proposed method.
The data set used for this research contains grades of the students which are nested
in different schools. One of the research questions addressed was how much of
the variance in the students’ proficiency is attributable to the schools. Therefore,
the MCMC analysis of the IRT models was done with a two-level model for the
proficiency parameters. That is, the overall covariance matrix was partitioned into a
within schools covariance matrix and a between schools covariance matrix. The intra
class correlation coefficients, which are the proportion of between school variance to
the total variance, give the information about the proportion of variance attributable
to the schools (see, for instance Bryk and Raudenbush, 1992). Another research
question investigated concerned the proportion of variance attributable to gender.
A second analysis was carried out with gender as a predictor for each of the four
proficiency dimensions.



4 1. Introduction

1.1. Overview of the Thesis

The chapters in this thesis are self-contained, hence they can be read separately.
Therefore, some overlap could not be avoided and the notations, the symbols and
the indices may slightly vary across chapters.

In Chapter 2, three methods for obtaining estimates of adjusted GPAs are dis-
cussed: a method proposed by Kelley (1976), an IRT model with a unidimensional
representation of proficiency, and a multidimensional IRT model with a simple struc-
ture multidimensional representation of proficiency. For all three methods, the grades
are either interpreted as continuous or categorical. The performance of the methods
is investigated using data from the Central Examinations in Secondary Education in
the Netherlands. Though the multidimensional IRT model fit the data significantly
better than the other models, all three methods produced very similar results. The
impact of the schools on the outcome data is small.

Chapter 3 presents three methods for the estimation of proficiency measures
that are comparable over students and subjects based on IRT: a method based on
a model with a unidimensional representation of proficiency, a method based on a
model with a multidimensional representation of proficiency and a method based
on a multidimensional representation of proficiency where the stochastic nature of
the choice of examination subjects is explicitly modelled by a selection model. The
results of the comparison using the data from the Central Examinations in Secondary
Education show that the unidimensional item response model produces unrealistic
results, which do not appear when using the two multidimensional IRT models.
Further, it is shown that both multidimensional models produce acceptable model
fit. However, the model that explicitly takes the choice process into account produces
the best model fit.

Chapter 4 presents MML estimation and testing procedures for IRT models for
continuous data. The model assumptions evaluated are subpopulation invariance (the
violation is often labeled differential item functioning), the form of the item response
function, local stochastic independence and the factor structure of the model. An
analysis pertaining to scaling the students’ grades is given as an example of the
methods proposed. A number of simulation studies is presented that assess the Type I
error rate and the power of the proposed tests.

In Chapter 5 a comprehensive Bayesian estimation method using a Markov chain
Monte Carlo (MCMC) computational method was developed that can be used to
simultaneously estimate the parameters for models for discrete and continuous re-
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sponses. To illustrate the estimation procedure, estimates of both a model without and
with a selection model are presented. Finally, it will be shown how the proportion of
variance in the grades explained by the students’ schools and the effect of covariates
(in this case Gender) can be estimated.

Finally, a summary of the main results is given and some suggestion for further
research are made.





2

Comparing School Performance
using Adjusted GPA Techniques

ABSTRACT: Methods are presented for comparing school performance
using the grades obtained on final central examinations where students
choose different subjects. It must be expected that the comparison be-
tween the grades is complicated by the interaction between the students
pattern and level of proficiency on one hand, and the choice of examina-
tion subjects on the other hand. Three methods for obtaining estimates
of school performance adjusting for this interaction are discussed: a
method proposed by Kelley (1976), an item response model (IRT) with a
unidimensional representation of proficiency, and multidimensional IRT
model with simple structure multidimensional representation of profi-
ciency. For all three methods, the grades are either interpreted as con-
tinuous or categorical. The performance of the methods is investigated
using data from the Central Examinations in Secondary Education in
the Netherlands. Though the multidimensional IRT model fit the data
significantly better than the other models, all three methods produced
very similar results. The impact of the schools on the outcome data is
insignificant, but for discrete data and multidimensional models differ-
ences between schools almost vanished.

This chapter has been submitted for publication as: O.B. Korobko, B.P. Veldkamp, and
C.A.W. Glas, Comparing school performance using the adjusted GPA techniques
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8 2. Comparing School Performance using Adjusted GPA Techniques

2.1. Introduction

School effectiveness research and the trend towards public reporting of school final
grades have given rise to a need for value added measures of school performance,
in which the average student achievement of schools is corrected for differences
between the students at school entry (Fitz-Gibbon, 1994; Willms, 1992). Differences
between average grades obtained in the final examination play a role to assess the
achievement of each school. The analysis of school performance are usually done
in the framework of multilevel modelling techniques (c.f. Goldstein, 1995; Snijders
& Bosker, 1999). The grade point average (GPA) on examinations is often entered
as a variable in these models. However, if the students have different examination
packages, GPAs are probably not comparable. The main problem with using GPAs as
proxies for educational achievement is the incorrect assumption that all course grades
mean essentially the same thing. However, there is always substantial variation
among topics, courses, teachers, instructors and grading standards. A related problem
is that students generally choose subjects that fit their proficiency level. One of
the problems addressed here is whether the fact that students generally choose the
examination subjects in which they feel competent distorts the comparison of aver-
age examination results between schools and whether GPAs need a standardization
over subjects that accounts for the confounding of the difficulty of subjects and the
proficiency of students.

Methods for standardization of GPAs can be roughly divided into two classes:
observed score methods (Kelly, 1976; Elliot & Strenta, 1987, 1988; Caulkins, Larkey
& Wei, 1996; Smits, Mellenbergh & Vorst, 2002) and IRT-based methods (Young,
1990, 1991; Johnson, 1997, 2003). Kelly (1976) proposes an heuristic method to
re-scale the grades in such a way that the GPAs of the subjects are the same in a
situation where all students take all examinations and all examinations have the same
difficulty. The method by Smits, Mellenbergh and Vorst (2002) does not re-scale
the observed responses but imputes unobserved grades accounting for the difficulty
of the examination topics and the overall proficiency level of the students. Smits,
Mellenbergh and Vorst, (2002) compared seven different missing grade imputation
methods. The simple GPA-adjustment techniques produced unrealistic results for
imputed grades, since imputed values for some subjects were higher than the ob-
served values. More complicated imputation techniques, like Multiple Imputation
(MI) produced more realistic results. Also Schafer & Olsen (1998) pointed out that
simple mean substitution can seriously dampen relationships among variables.
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IRT-based methods (Young, 1990, 1991; Johnson, 1997, 2003) separate the in-
fluence of the difficulty level of the examination topics and the proficiency level
of the students via the introduction of difficulty parameters and latent proficiency
parameters. This may have two drawbacks. First, the used IRT models pertain
to discrete observations while the grades may be better represented as continuous
responses. And second, proficiency may not be unidimensional at all. Therefore,
the present article investigates the impact of using IRT models with a multidimen-
sional representation of proficiency, and the impact of using discrete or continuous
representation of grades.

This article is organized as follows. After this section, an example of an observed
score method, the method proposed by Kelly (1976) and IRT-based methods are pre-
sented. The methods will be compared using data from the Central Examinations in
Secondary Education in the Netherlands, which were collected by Dutch Inspection
of Education. The methods will be used for a comparison schools. Finally, the last
section gives a discussion and some conclusions.

2.2. Design and Methods

Data are used from 6,142 approximately 17-year old students in pre-university schools
in the Netherlands, the only curriculum track (of the four available) that prepares
students for direct entry into a university. The data were collected by the Inspectorate
of Education. The students sit examinations in 6 or 7 subjects to be chosen from
a total of 16. These external examinations are based on standardized achievement
tests, and for this study only the results from the first session are used (unsatisfactory
marks might be “repaired” in a re-session).

Our analysis relate to a subset of the pre-university students that took their final
examination in the school year 1994/1995. The original data set comprised 16,118
students. Students that did not take an examination in both Dutch and English were
excluded from the analysis. Furthermore, students taking an examination in one
of the “unusual” subjects (see Table 2.1) were excluded as well. However, most
students were excluded to restrict the analysis to 60 fairly common combinations
of examination subjects out of a potential 8,000. The students that had chosen
one of the 25 most common combinations were included, but none of the 25 most
common combinations included the subjects Classical Greek or Fine Art and only
one combination included Latin. Extra students were added in order to make sure
that the data set contained sufficient information on these three subjects as well.
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Table 2.1: Usual and unusual subjects; percentage of students taking an
examination

Usual subjects Unusual subjects
Subjects Percentage Subjects Percentage
Dutch language 99.9 Frisian language 0.0
Latin 14.6 Russian 0.0
Classical Greek 6.2 Spanish 0.2
French 37.6 Handicrafts 1.9
German 45.4 Music 1.6
English 99.1 Philosophy 0.7
History 49.5 Social studies 2.3
Geography 33.9
Applied Math 63.0
Advanced Math 44.7
Physics 46.7
Chemistry 38.2
Biology 37.0
General Economy 58.7
Business Economy 36.0
Arts 7.8

These were the students with the 10 most common combinations of Latin with other
subjects (except for the one already included), the students with the 13 most common
combinations of Greek with other subjects (one of these also included Latin) and
the 12 most common combinations of Fine Art with other subjects.

Given the subjects chosen, we can distinguish three groups of students:
1. The linguistically oriented students (20%). These students take examinations

in French and German languages and not more than one of the subjects Applied
Mathematics, Advanced Mathematics, Physics and Chemistry.

2. The science oriented students (33%). These students take examinations in 2at
least three of the subjects Applied Mathematics, Advanced Mathematics, Physics and
Chemistry and no examinations in French or German languages.

3. Other students (47%).
One might view the problem of comparing the difficulty of examination as a test
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Figure 2.1: Design of the study

equating problem, with an incomplete design with 60 tests, in which each subject
is an item. The “anchor items” in this study are the subjects Dutch Language and
English language, that are taken by all students. The design is graphically depicted
in Figure 2.1. We restrict ourselves in this example to 3 very simple combinations of
6 out 11 subjects.

2.2.1. Methods Based on Item Response Theory

An IRT Model for Categorical Data

The original examinations grades are categorized into four categories labelledj =

0, ....,mi , wheremi = 3. The original grades ranged from 1 (“poor”) to 10 (“excel-
lent”), but for the purpose of this study they were re-scaled to a four point scale,
where the points are 0 (original grade 0 to 5.4, which is unsatisfactory), 1 (original
grade 5.5 to 6.4, which is just satisfactory), 2 (original grade 6.5 to 7.4, which is
good), and 3 (original grade 7.5 to 10, which is very good).

The data will be analyzed using the generalized partial credit model (Muraki,
1992). For the unidimensional case, it is assumed that the probability that the grade
of studentn (n = 1, ...,N) on examination subjecti (i = 1, ...,K), denoted byXni, is
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in categoryj is given by

Pr(Xni = j|dni = 1) =
exp

(
jαiθn −∑ j

h=1 βih

)

1 +
m∑

h=1
exp

(
hαiθn −∑h

p=1 βip

) , (2.1)

whereθn is the unidimensional proficiency parameter that represents the overall pro-
ficiency. So it is assumed here that one unidimensional proficiency parameterθ

can explain all examination grades. The parametersβi j ( j = 1, ...,mi) model the
difficulty of examination subjecti, and the parameterαi defines the extent to which
the probability is related to the proficiencyθ. Following Bock and Zimowski (1997),
it will be assumed that distinct groups of students have distinct normal distributions
of their proficiency parametersθ. In the present case, it is assumed that every group of
students taking a specific examination package have a normal proficiency distribution
with a specific mean. The variance is the same for all groups. The parameters are
estimated using maximum marginal likelihood (see, Bock & Aitkin, 1981).

An IRT Model for Continuous Data
The examination grades originally range from 0 till 10 with two decimal places.
They can be analyzed with IRT models for continuous responses as outlined by such
authors as Mellenbergh (1994), Moustaki (1996) and Skrondal and Rabe-Hesketh
(2004). These models are equivalent to a unidimensional factor model. Consider a
two-dimensional data matrixX with entriesxni, for n = 1, ...,N, andi = 1, ...,K. The
matrix contains the responses of students to items. It is assumed that the response of
the studentn on the itemi is normally distributed, that is

P(xni | θn, αi , βi ) =
1√

2πσ2
i

· exp

− (xni − τni)2

2σ2
i

 . (2.2)

The expectation of the item response is a linear function of the explanatory variables,

τni = αiθn − βi (2.3)

whereαi is a factor loadings andβi is a location parameter. We assume that the
density of person parameterθn is a normal distribution with the expectationµθ and
the varianceσθ. Further, we assume that the varianceσ2

i = 1, for all i. That is,
we assume that all the observed responses have the same scale. The parameters
can, for instance, be estimated using maximum marginal likelihood estimation as
implemented in the M-plus program (Muthén & Muthén, 2003).
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Multidimensional IRT Models for Categorical and Continuous Data
In the previous models it was assumed that the probability of the grades of studentn
on examination subjecti is by (2.1) and (2.2) for categorical responses and continuous
responses, respectively. However, there may be more than one factor underlying the
examination grades. For instance, there might be a special proficiency factor for the
science proficiency and another one for the language proficiency. Of course, it must
be expected that these factors correlate positively, and probably quite high. IfQ
proficiency dimensions are needed to model the grades, the proficiency of studentn
can no longer be represented by a unidimensional scalarθn, but must be represented
by a vector of proficiency

(
θn1, ..., θnq, ..., θnQ

)
. The probability of a grade in category

j is now given by

Pr(Xni = j) =

exp

(
j

(
Q∑

q=1
αiqθnq

)
−∑ j

h=1 βih

)

1 +
m∑

h=1
exp

(
h

(
Q∑

q=1
αiqθnq

)
−∑h

p=1 βip

) . (2.4)

For continuous responses, the expectation of the item response is given by

τni =

Q∑

q=1

αiqθnq− βi = α′i θn − βi ,

whereαi is a vector, which are usually called factor loadings andβi is a location
parameter. Both for the categorical and continuous model, we assume that the density
of θn is described by aQ-variate normal distribution with a covariance matrixΣθ. The
correlation between the proficiency dimensions that are parameters of this multivari-
ate normal distribution represent the extent to which the dimensions are dependent.
In addition, it will be assumed that the proficiency parameters of groups of students
taking a specific package of examination subjects have specific means. So it will be
assumed that the mean of these distributions depends on the package and that the
covariance matrix of the proficiency parameters is common over groups.

Takane and de Leeuw (1987) show that the model for categorical data is equiva-
lent with a full-information factor analysis model. Therefore, the parametersαi1, ...,

αiQ are often called factor-loadings, and the proficiency parametersθn1, ..., θnq, ..., θnQ

can be viewed as factor scores. Note that the factor loadings are specific for an
examination subject and they model the relation between the probability of obtaining
a grade and the level on theQ proficiency dimensions. A high positive value ofαiq
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means that theq-th dimension is important for the subject, a value close to zero
means that the dimension does not play an important role. Finally, the relation
between theQ proficiency parameters is modelled by assuming that the proficiency
parametersθ1, ..., θq, ..., θQ are independent between persons and, for every person
drawn from aQ-variate normal distribution with a meanµ and a covariance matrix
Σ. To identify the model, it is will be assumed that the mean of the proficiency
parametersθ1, ..., θq, ..., θQ of the first package is equal to zero. For further identifica-
tion restrictions refer to Béguin and Glas (2001). In the present application a simple
structure of factor loadings was used, that is it: each item is loading on one dimension
only.

2.2.2. Kelly’s Method

The IRT-based methods will be compared with a method proposed by Kelly (1976).
This method gives us the standardization of the subject grades such that the difficulty
of subjects and the strictness of possible raters is corrected for. “Standardization is
used to approximate a student’s grade in a subject to that which would be obtained in
the ideal situation when all students took all subjects, and all subjects were marked
by the same examiners” (Kelly, 1976). The method is conditional on the students’
total gradesxn =

∑
i dnixni. That is, these grades are considered an estimate of

overall proficiency and are not affected by the standardization. The students, subject
gradesxni are standardized to gradesx∗ni in such a way that the mean difficulties of
the subjects become the same. So the method boils down to weighting the subjects
in such a way that their difficulties are the same, without altering the total grade
distribution.

Two algorithms are available to achieve this. Kelly (1976) proposed an iterative
method. In each iteration, a consensus standard is established for each subject by
equating the mean grade in that subject with the mean of the mean grades the same
students obtained in all other subjects. Define

yni =


K∑

j=1, j,i

dn jxn j

 /


K∑

j=1, j,i

dn j

 , (2.5)

Soyni is the mean of the grades of individualn in the subjects endorsed, excluding
subjecti. The correction for subjecti is defined as

δi = yi − xi
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wherexi is the mean of the grades in each subject, that is,

xi =


N∑

n=1

dnixni

 /


N∑

n=1

dni

 ,

andyi is the mean of the gradesyni, that is,

yi =


N∑

n=1

dniyni

 /


N∑

n=1

dni

 .

Then the students’ subject grades are adjusted to obtain grades

x∗ni = xni − δi .

The process is re-iterated with these adjusted grades as input and the iterations are
repeated until convergence. Note that the method re-weights the mean grades for
each subject until they are the same, but for each student the mean grade remains the
same. Therefore, the adjustmentsδi can be seen as the difficulties of the subjects. So,
the correction indicates how difficult this subject is in relation to the other subjects. A
positive correction indicates difficult subjects and negative correction indicates easy
subjects.

Lawley (see, Kelly, 1976) has shown that this iterative procedure is equivalent to
a set of linear equations that can be solved analytically. Both methods were used in
the present article and the results were equivalent.

Kelly’s method received criticism from Newton (1997), who argues that the me-
thod cannot be used to obtain the between-subjects comparisons. If the sample of
students was divided into identifiable subgroups, such as male and female candidates,
we would obtain different corrections for different subgroups. If these differences
were statistically significant,this would invalidate the method, because grading does
not take into account gender. According to Newton (1997) “these techniques would
only be in the running as indices of between-subject comparability if our public
examinations measured a different kind of quality to that which they currently assess”
and further “The Subject-Pair Analysis (SPA) does not assume that factors such as
motivation and teaching standards are comparable between subjects”. The students
demonstrate different level of achievement in different subjects, and Kelly’s method
can provide false conclusions concerning grading standards. Newton also criticizes
the term “general academic ability” as used by Kelly. This problem of multidimen-
sionality is easily solved within the framework of IRT.
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2.2.3. Methods for Comparison the Schools

A basic measure for degree of dependency in clustered data (in our case the students
nested in different schools) is the intraclass correlation coefficient. It gives the propor-
tion of the variance in the students’ grades attributable to the schools. The intraclass
correlation coefficient (ICC) is defined as

ρ =
τ2

τ2 + σ2
, (2.6)

whereσ2 stands for the within-schools variance andτ2 stands for the between-
schools variance (see, for instance, Snijders and Bosker, 1999). The sumτ2 + σ2

is the total variance.
For each school the average examination grade per subject (averaging over stu-

dents) is estimated using available observed grades and, if these are not available,
the imputed expected grades based on the unidimensional and multidimensional IRT
models for continuous and categorical data. For unobserved grades (subjects not
endorsed by students) the grades were computed by first computing the posterior
expectation and variance under the model. Because these expectations are in fact
estimates, the uncertainty of these estimates must be taken into account. This was
done by the method of plausible value imputation (see Mislevy, Beaton, Kaplan &
Sheehan, 1992): for every unobserved subject of every student one value was drawn
from its posterior distribution and the variance components and intraclass correlations
were computed.

2.3. Results

2.3.1. Kelly’s Method and Unidimensional IRT Model for Categorical and
Continuous Data

The results of applying Kelly’s method and unidimensional IRT models are given
in Table 2.2 for categorical and Table 2.3 for continuous data, respectively. The
first column in these tables presents the examination subjects. The second column
presents the mean of the observed grades. The third column presents the correction
δi for each of the subjects as obtained by Kelly’s method. This correction can be
interpreted as the difficulty of each subject. Most difficult subjects, such as Advanced
Mathematics, Applied Mathematics and Physics, obtain positive corrections, and less
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difficult subjects, such as Latin, Arts and French, obtain negative corrections. The
correction for subjects like Dutch, English, Geography and Business Economics is
near zero, so these subjects have a difficulty near the overall mean. In these tables,
these corrections are given in decreasing order. The fourth column presents the
corrected mean, which we obtained by applying Kelly’s method. The next column
shows the expected average examination grades, given the data, and computed using
IRT models under the assumption that all students take all examinations. That is, if
a student did not take a subject, an expected grade was imputed that was computed
on the basic of the estimated proficiency of the student and the “item-parameters”
of the subject. For unidimensional IRT models, both for continuous and categorical
responses the mean of the expected grades are not much different from the observed
grades. The last column presents the mean item parameterβ obtained by IRT model.
This mean can be seen as the overall location of the examination on the latent scale.
The rank order of the item parameters are between brackets. The correction obtained
by Kelly’s method and the mean parameterβ obtained by a unidimensional IRT
model can be interpreted as the difficulty of the examination subject. The correlation
between the correction obtained by Kelly’s method and mean IRT parameters is very
high, for categorical data correlation is 0.96, and for continuous data correlation is
0.88. It is interesting that Chemistry and Biology are in the top 5 of the most difficult
subjects for continuous data, but for categorical data the correction for the mean of
grades for these subjects are negative for Kelly’s method.

Both Kelly’s method and IRT models are based on models assuming an unidi-
mensional proficiency structure. In the first method, the difficulty of the subjects is
represented by the adjustmentδi needed to scale the difficulty of the subjects, in the
second method by expected grades computed under the assumption that all students
took all subjects. In Tables 2.2 and 2.3 it can be seen that the rank orders of the
correctionsδi (the third column) and the item parameters under IRT Models are very
similar. Further, it can be seen that the most difficult subjects as Advanced Math and
the least difficult subject is Latin.

Several methods are available to obtain overall proficiency grades for students.
Four methods were compared: EAP estimates of the ability parameters (denoted
by θ̂), plausible values drawn from the posterior distribution (denoted byθ̃), and
expected GPAs evaluated using eitherθ̂ or θ̃, denoted by GPA(̂θ) and GPA(̃θ), respec-
tively.

Table 2.4 shows the correlations between the methods. Correlations between
observed (raw) GPA, expected GPA and proficiency estimates for continuous obser-



18 2. Comparing School Performance using Adjusted GPA Techniques

Table 2.2: Correction and Corrected means obtained by Kelly Method and
Estimation Grades under 1-dimensional IRT Model (categorical data)

Corrected Expected
Subjects Mean Correction Mean Gradesβ
Advanced Math 1.37 0.31 1.68 1.20 0.39(1)
Applied Math 1.16 0.22 1.38 1.23 0.28(3)
Physics 1.50 0.16 1.66 1.32 0.38(2)
General Economy 1.27 0.12 1.39 1.33 0.26(4)
Dutch 1.38 0.08 1.46 1.38 0.21(5)
English 1.50 -0.04 1.46 1.50 0.01(8)
Geography 1.31 -0.04 1.27 1.44 0.11(6)
Business Economy 1.41 -0.05 1.36 1.48 0.05(7)
Chemistry 1.76 -0.11 1.65 1.56 -0.10(9)
Biology 1.76 -0.11 1.65 1.62 -0.27(12)
German 1.51 -0.14 1.37 1.60 -0.18(10)
History 1.59 -0.22 1.38 1.66 -0.23(11)
Classical Greek 2.18 -0.22 1.98 1.86 -0.42(15)
French 1.64 -0.25 1.39 1.71 -0.29(13)
Arts 1.60 -0.36 1.24 1.67 -0.29(14)
Latin 2.48 -0.67 1.81 2.29 -1.05(16)

vations are given in the first part of this table. The correlation between Raw GPA
and GPA(̂θ) and GPA(̃θ) is very high, 0.98 and 0.97 respectively. The correlation
between the estimates of proficiencyθ̂ and the plausible values̃θ is 0.92. Overall the
difference between the various estimation methods is quite high.

The second part of the table presents the analogous correlations under a discrete
model. Correlation between Raw GPA and GPA(θ̂) is very high, 0.99. Overall, the
pattern is similar to the pattern for the continuous case: the correlations are quite
high.

The bottom part of the Table 2.4 represents the correlation matrix between conti-
nuous and discrete raw GPA, expected GPA’s and estimated proficiencies. Also here,
the correlations are high and in most cases are more than 0.90.



2.3. Results 19

Table 2.3: Correction and Corrected means obtained by Kelly Method and
Estimation Grades under 1-dimensional IRT Model (continuous data)

Corrected Expected
Subjects Mean Correction Mean Grades−β
Advanced Math 6.32 0.53 6.85 6.16 6.01(1)
Physics 6.46 0.48 6.94 6.31 6.16(3)
Chemistry 6.77 0.19 6.96 6.61 6.47(9)
Biology 6.71 0.13 6.84 6.61 6.55(10)
General Economy 6.14 0.13 6.27 6.16 6.21(4)
Applied Math 6.02 0.07 6.10 6.04 6.12(2)
Dutch 6.30 0.06 6.35 6.30 6.30(5)
Business Economy 6.31 0.00 6.31 6.35 6.39(7)
English 6.42 -0.09 6.33 6.42 6.42(8)
Geography 6.24 -0.19 6.06 6.33 6.39(6)
German 6.48 -0.23 6.25 6.53 6.59(11)
History 6.55 -0.33 6.22 6.59 6.65(13)
Classical Greek 7.27 -0.33 6.93 6.95 6.97(15)
French 6.66 -0.43 6.24 6.72 6.77(14)
Arts 6.54 -0.46 6.08 6.62 6.63(12)
Latin 7.73 -0.88 6.85 7.54 7.53(16)

2.3.2. Comparison of the Results for Categorical and Continuous Multidi-
mensional IRT Models

A multidimensional IRT model for discrete responses was fitted with a method by
Béguin and Glas (2001). The method identifies the dimensions by fitting unidi-
mensional IRT models by discarding items, or, in the present case, examination
subjects. These examination subjects are entered as unique indicators of a dimension
in the multidimensional IRT model, that is, these examination subjects load on one
dimension only. The unidimensional subscales were searched for with the program
OPLM (Verhelst, Glas & Verstralen, 1995). TheR1c statistic (Glas, 1988) was used
as a criterion for model fit.

Using this partitioning of examinations into subscales, the parameters of the
multidimensional model for discrete data were estimated using maximum marginal
likelihood by a dedicated program, and the parameters of the multidimensional model
for continuous data were estimated using maximum marginal likelihood estimation
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Table 2.4: Correlations between raw GPA, expected GPA and proficiency
estimated using unidimensional models

Continuous Observations
Raw GPA GPA(̂θ) GPA(̃θ) θ̂ θ̃

Raw GPA 1.00
GPA(̂θ) 0.98 1.00
GPA(̃θ) 0.97 0.98 1.00
θ̂ 0.98 0.95 0.94 1.00
θ̃ 0.89 0.87 0.78 0.92 1.00
Discrete observations

Raw GPA GPA(̂θ) GPA(̃θ) θ̂ θ̃

Raw GPA 1.00
GPA(̂θ) 0.99 1.00
GPA(̃θ) 0.95 0.96 1.00
θ̂ 0.95 0.96 0.92 1.00
θ̃ 0.83 0.85 0.93 0.87 1.00
Discrete by Continuous Observations

Continuous
Discrete Raw GPA GPA(̂θ) GPA(̃θ) θ̂ θ̃

Raw GPA 0.96 0.95 0.93 0.94 0.86
GPA(̂θ) 0.96 0.93 0.92 0.96 0.88
GPA(̃θ) 0.92 0.90 0.89 0.92 0.85
θ̂ 0.93 0.91 0.89 0.94 0.86
θ̃ 0.81 0.80 0.78 0.83 0.76

by M-plus program (Muthén & Muthén, 2003). Table 2.5 gives us results of Mul-
tidimensional IRT models for continuous and categorical data. The table shows the
extent to which the subjects depend on the proficiency level of three dimensions:
Language, Science and Economy. The first column presents the subjects, the next
three columns present the factor loadingsαiq for three dimensions Language, Science
and Economy for categorical data and last three columns present the factor loading
αiq for three dimensions Language, Science and Economy for continuous data. The
stars indicate fixed factor loadings. The categorical and continuous data have the
same simple structure: each item is loading on one factor only. Highest loadings on
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the Language dimension are obtained for German, French and English, and lowest
loading on this dimension is for Dutch Language. This is probably due to the fact that
Dutch is the mother tongue for the students and so that the specific linguistic com-
ponent of this subject may be small. For the Science dimension, Physics, Chemistry
and Advanced Mathematics have the highest loadings. For the Economy dimension,
General Economy and Business Economy have the highest loadings. Arts loaded low
on any dimension and was assigned to the third dimension. The results are analogous
for categorical and continuous data.

Table 2.5: Factor Loading per Subjects for the 3-Factor Solution IRT
(simple structure) and Correlation Matrices

Categorical data Continuous data
Subjects Language Science Economy Language Science Economy
Dutch 0.49 0.00∗ 0.00∗ 0.22 0.00∗ 0.00∗

Latin 0.82 0.00∗ 0.00∗ 0.39 0.00∗ 0.00∗

Classical Greek 0.75 0.00∗ 0.00∗ 0.41 0.00∗ 0.00∗

French 1.33 0.00∗ 0.00∗ 0.62 0.00∗ 0.00∗

German 1.64 0.00∗ 0.00∗ 0.60 0.00∗ 0.00∗

English 1.21 0.00∗ 0.00∗ 0.62 0.00∗ 0.00∗

History 0.00∗ 0.00∗ 0.87 0.00∗ 0.00∗ 0.43
Geography 0.00∗ 0.85 0.00∗ 0.00∗ 0.36 0.00∗

Applied Math 0.00∗ 0.74 0.00∗ 0.00∗ 0.56 0.00∗

Advanced Math 0.00∗ 0.96 0.00∗ 0.00∗ 0.62 0.00∗

Physics 0.00∗ 1.41 0.00∗ 0.00∗ 0.65 0.00∗

Chemistry 0.00∗ 1.45 0.00∗ 0.00∗ 0.68 0.00∗

Biology 0.00∗ 0.98 0.00∗ 0.00∗ 0.38 0.00∗

General Economy 0.00∗ 0.00∗ 1.10 0.00∗ 0.00∗ 0.55
Business Economy 0.00∗ 0.00∗ 1.17 0.00∗ 0.00∗ 0.55
Arts 0.00∗ 0.00∗ 0.36 0.00∗ 0.00∗ 0.19

Correlation matrix
Language 1.00 1.00
Science 0.52 1.00 0.50 1.00
Economy 0.57 0.97 1.00 0.54 0.95 1.00

The correlation matrices between the dimensions are given at the bottom of the
table. Note that the correlation between the Science dimension and the Economy
dimension is very high: 0.97 for categorical data, and 0.95 for continuous data.
Correlations between the other dimensions are much lower.

Table 2.6 presents estimated average grades for examination subjects under mul-
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tidimensional IRT models for categorical and continuous data. The third and the fifth
columns present mean item parametersβ for categorical grades andβ for continuous
grades, respectively. Note that Latin was the least difficult subject, while Advanced
Math and Physics are the most difficult subjects. The correlation between continuous
and categorical expected grades was 0.96 and between continuous and categorical
item parametersβ is 0.98. That means that these two different IRT methods produced
very similar results. Further, the rank orders of the subjects are very similar to the
rank orders in Table 2.2 and Table 2.3.

Table 2.6: Examination grades and item parameters estimated under 3-
factor IRT model

Categorical data Continuous data
Subjects Estimated Grade β Estimated Grade β

Dutch 1.38 0.22(5) 6.30 6.30(5)
Latin 2.32 -1.09(16) 7.49 7.43(16)
Classical Greek 1.91 -0.47(15) 6.94 6.91(15)
French 1.61 -0.20(11) 6.64 6.62(12)
German 1.49 -0.06(9) 6.47 6.45(10)
English 1.50 0.00(8) 6.42 6.42(9)
History 1.67 -0.24(12) 6.58 6.69(14)
Geography 1.42 0.12(7) 6.32 6.42(8)
Applied Math 1.20 0.30(4) 6.01 6.13(3)
Advanced Math 1.29 0.41(1) 6.19 5.95(1)
Physics 1.41 0.39(2) 6.36 6.11(2)
Chemistry 1.61 -0.11(10) 6.65 6.41(7)
Biology 1.64 -0.28(13) 6.63 6.52(11)
General Economy 1.29 0.31(3) 6.14 6.22(4)
Business Economy 1.42 0.13(6) 6.33 6.35(6)
Arts 1.67 -0.30(14) 6.63 6.64(13)

The fit of the IRT models (unidimensional and multidimensional) for continuous
and categorical data was evaluated using likelihood ratio tests. A test of unidimen-
sional IRT against multidimensional IRT for continuous data yielded a chi-square
value of 1790.8 with 3 degrees of freedom. A test of unidimensional IRT against
multidimensional IRT for categorical data yielded a chi-square value of 867.6, also
with 3 degrees of freedom. So the multidimensional IRT models fitted better than the
unidimensional IRT models. However, the impact of this better model fit as displayed
in Table 2.6 was quite small.

Table 2.7 presents the correlations between observed (raw) GPA and expected
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GPA estimated using multidimensional IRT models for continuous and categorical
data. In this table Raw GPA pertains to observed grades only, GPA(θ̂) pertains
to expected GPA obtained using estimated proficiencies of students, and GPA(θ̃)
pertains to expected GPA obtained using plausible values drawn from the posterior
distributions of the parameters. The first three GPAs relate to the continuous IRT
model, and the last three GPA’s to the discrete IRT model. The correlation between
Raw GPA and GPA (̂θ) for the continuous case is very high. For the discrete case the
correlation between Raw GPA and GPA (θ̂) is lower, but still as high as high 0.95.

Table 2.7: Correlations between raw GPA and expected GPA estimated
using multidimensional models
Continuous Discrete

Raw GPA GPA(̂θ) GPA(̃θ) Raw GPA GPA(̂θ) GPA(̃θ)
Raw GPA 1.00
GPA(̂θ) 0.99 1.00
GPA(̃θ) 0.95 0.96 1.00

Raw GPA 0.96 0.94 0.90 1.00
GPA(̂θ) 0.93 0.92 0.88 0.95 1.00
GPA(̃θ) 0.92 0.89 0.86 0.88 0.89 1.00

2.3.3. Estimation of Variance Attributable to Schools via Imputation

Finally, various estimates of the variance attributable to the schools were estimated
using ICCs as defined by (2.6). The ICCs are shown in Table 2.8. Note that the
ICC for continuous observed grades is highest: 0.080. All ICCs for the continuous
grades estimated using unidimensional and multidimensional methods are lower.
This suggests that the choice pattern of the examination topics is related to the school
attended since the schools explain more observed variance than adjusted variance.
Note that if we correct for the unreliability of the estimates by using plausible values,
the ICCs decrease even further.

The impact of the school on the outcomes for the discrete grades is systemati-
cally lower than for the continuous grades. This means that categorization seems to
attenuate the differences between schools. The overall conclusion is that the impact
of the schools on the outcomes is not very large.
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Table 2.8: Intra-class correlations estimated using different methods
Continuous Discrete

Raw GPA 0.0800 0.0740
Unidimensional

Continuous Discrete
GPA(̂θ) 0.0729 0.0662
GPA(̃θ) 0.0704 0.0623

θ̂ 0.0712 0.0661
θ̃ 0.0604 0.0526

Multidimensional
Continuous Discrete

GPA(̂θ) 0.0722 0.0584
GPA(̃θ) 0.0675 0.0592
θ̂1 0.0719 0.0538
θ̃1 0.0425 0.0534
θ̂2 0.0566 0.0413
θ̃2 0.0392 0.0404
θ̂3 0.0684 0.0434
θ̃3 0.0476 0.0431

2.4. Discussion and Conclusion

The problem addressed here concerned comparison of students and schools based on
average examination grades. The complicating factor is that students only sit exam-
inations in subjects they have chosen themselves. As a consequence more proficient
students may choose examinations in subjects that are more difficult. Kelly’s method
and unidimensional IRT methods show very similar results, both for continuous and
discrete grades. The rank order of the estimates of the difficulty of the examination
subjects is very high. The most difficult subjects according these methods are Ad-
vanced Mathematics, Applied Mathematics and Physics, least difficult subjects are
French, Arts and Latin.

However, it is not a-priori plausible that the proficiency structure assessed by
the examinations is unidimensional. Three dimensional IRT models with a simple
structure where each subject loads on one dimension only were considered. The
results of the three factor models for categorical and continuous grades are very
similar. Highest loadings on the Language dimension are attained by the examina-
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tions in German, French and English Language. For the Science dimension, Physics,
Chemistry and Advanced Math have the highest loadings. A third dimension had
highest loadings for General Economy and Business Economy, and was therefore
labeled as an Economy dimension. However, the correlation between the Science
dimension and the Economy dimension is very high.

Overall, the multidimensional IRT model fitted the data significantly better than
unidimensional IRT model, despite the fact that the obtained expected grades for
multidimensional and unidimensional IRT models are very close.

A drawback of the methods discussed here is that every subject should load on
one dimension only. Latin had a low loading on the Language dimension but could
probably load on other dimensions also. So the next step is developing multidimen-
sional IRT models that can support a more complicated factor structure.
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Modelling the Choice of
Examination Subjects

ABSTRACT: Methods are presented for comparing grades obtained in a
situation where students can choose between different subjects. It must
be expected that the comparison between the grades is complicated by
the interaction between the students’ pattern and level of proficiency
on one hand, and the choice of the subjects on the other hand. Three
methods for the estimation of proficiency measures that are comparable
over students and subjects based on item response theory are discussed:
a method based on a model with a unidimensional representation of
proficiency, a method based on a model with a multidimensional rep-
resentation of proficiency and a method based on a multidimensional
representation of proficiency where the stochastic nature of the choice of
examination subjects is explicitly modeled. The methods are compared
using the data from the Central Examinations in Secondary Education in
the Netherlands. The results show that the unidimensional item response
model produces unrealistic results, which do not appear when using the
two multidimensional item response models. Further, it is shown that
both multidimensional models produce acceptable model fit. However,
the model that explicitly takes the choice process into account produces

This chapter has been submitted for publication as: O.B. Korobko, C.A.W. Glas, R.J. Bosker, and
H. Luyten, Comparing the difficulty of examination subjects with Item Response Theory
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the best model fit.

3.1. Introduction

The problem of grade adjustment for the comparison of students and schools has
a long history (see, for instance, Linn, 1966). Johnson (1997, 2003) notes that
combining student grades through simple averaging schemes to obtain grade point
averages (GPAs) results in systematic bias against students enrolled in more rigorous
curricula. The practice has important consequences for the course selection by the
students, and it may be one of the major causes of grade inflation. Caulkins, Larkey
and Wei (1996) note that the use of GPA is based on the incorrect assumption that
all course grades mean essentially the same thing. There is, however, substantial
variation among majors, courses, and instructors in the rigor with which grades are
assigned. A lower GPA may not necessarily mean that the student performs less well
than students who have higher GPAs; the student may simply be taking courses and
studying in fields with more stringent grading standards.

The appropriateness of GPAs is also a point of debate in school effectiveness
research and in the trend towards public reporting of school results. School results
are generally corrected for differences between the students at school entry (Fitz-
Gibbon, 1994; Willms, 1992), but the comparability of the actual outcome measures,
such as examination results, has received less attention, with the exception of Kelly
(1976), Newton (1997), and Smits, Mellenbergh and Vorst (2002). In many countries
(such as the Netherlands, where the data used here emanate) a student’s examination
result has a direct consequence for the admittance to university. Therefore, students
generally choose the examination subjects in which they feel competent. The focal
problem addressed by Kelly (1976), Newton (1997), and Smits, Mellenbergh and
Vorst (2002) is whether the fact that students generally choose subjects that fit their
proficiency distorts the comparison of average examination results between schools.
Parents, local authorities and politicians, however, may interpret these differences in
GPAs as absolute objectivity, ignoring the influence of the differences in the difficulty
of the subjects and the students’ choice behavior.

Most more recent methods for adjusting GPA are based on item response theory
(IRT). The objective of these methods is to account for the relative difficulty of the
courses or examinations and the differences in the proficiency levels of the students
(Young, 1990, 1991; Johnson, 1997, 2003). In the present article, this approach is
expanded in two directions. First, it is assumed that the courses or examinations



3.2. Methods 29

load on more than one dimension. (In the sequel, we will use the term examinations
as a generic name that also includes assessments of courses and the like). Using a
real-data example it is shown that a multidimensional representation of proficiency
leads to more plausible results and better model fit. Second, it is argued that the
free choice of examinations may lead to a violation of the ignorability principle
(Rubin, 1976) and, as a consequence, to biased estimates of the difficulties of the
examination subjects. It is shown that this bias can, to a certain extent, be accounted
for by introducing a stochastic model for the choice variables.

This article is organized as follows. First, three IRT models will be described: a
unidimensional and a multidimensional model for the grades only, and a multidimen-
sional model pertaining to the grades and the choice variables simultaneously. As
an example, an analysis of data collected by Dutch Inspectorate of Education will be
presented. Then, a method for the evaluation of model fit will be described and the fit
of the three models will be compared. Finally, the last section presents a discussion
and some conclusions.

3.2. Methods

3.2.1. Grade Point Average Adjustment

One might view the problem of comparing the difficulty of examinations as an item
scaling problem with incomplete data, that is, as a test equating problem (see, for in-
stance, Kolen and Brennan, 1995), where an item score is the (discrete, polytomous)
score on an examination subject. We define a choice variable as

dni =


1 if studentn did chose examination subjecti

0 if studentn did not chose examination subjecti ,
(3.1)

for studentsn = 1, ...,N and examination subjectsi = 1, ...,K. An important aspect of
the problem discussed in this article is that the design (that is, the values of the choice
variablesdni) is not fixed in advance, but it is student driven and therefore stochastic.
The consequences of the stochastic nature of the design will be returned to below.

The objective is to compute adjusted GPAs in such a way that they are compa-
rable. This is done by estimating the GPA for a situation where all students take all
examinations. Since they do not actually take all examinations, we impute expected
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grades for the missing observations, that is

GPA=
1
K

K∑

i=1

(dniXni + (1− dni)E(Xni)), (3.2)

whereXni is the observed grade ifdni = 1 and an arbitrary value ifdni = 0, andE(Xni)
is the expectation under a model used to describe the students’ proficiency.

3.2.2. Item Response Theory

The expectationsE(Xni) in (3.2) will be computed using IRT models for the profi-
ciency of the students and the difficulty of the examination subjects. Three models
will be discussed. In the first model, it will be assumed that the grades on all
subjects have a unidimensional representation of proficiency. In the second model,
this assumption is broadened to the assumption that the subjects relate to more than
one proficiency dimension. The third model is motivated by the expectation that there
is an interaction between the students’ pattern and level of proficiency on one hand,
and the choice of examination subjects on the other hand. Therefore, the third model
has a multidimensional representation of proficiency where the choice-variables are
explicitly modelled.

Model 1
Model 1 is the unidimensional version of the generalized partial credit model (Mu-
raki, 1997). The probability that the gradeXni is in categoryj ( j = 0, ...,m) is given
by

p (Xni = j|dni = 1;θn) =
exp

(
jαiθn −∑ j

h=1 βih

)

1 +
m∑

h=1
exp

(
hαiθn −∑h

k=1 βik

) , (3.3)

whereθn is the unidimensional proficiency parameter that represents the overall pro-
ficiency of studentn. So it is assumed here that all examination grades relate to one
unidimensional proficiency parameterθn. The parametersβi j ( j = 1, ...,mi) are the
locations on the latent scale where the probabilities of scoring in categoryj − 1 and j
are equal. These parameters model the difficulty of examination subjecti. (βi0 = 0 to
identify the model). Parameterαi defines the extent to which the response is related
to the proficiencyθn.

The parameters of the model can be estimated using maximum marginal likeli-
hood (MML, see Bock & Aitkin, 1981). In MML, the model is enhanced with the
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assumption that the proficiency parameters are drawn from one normal distribution
or from more than one normal distribution (the latter is known as multiple-group
IRT, see Bock and Zimowski, 1997). In the example presented below, it cannot be
a priori assumed that the average level of proficiency is independent of the chosen
examination package. Therefore, it will be assumed that students choosing the same
examination package (that is, students with the same pattern on the choice variables
dn1, ...,dni, ...,dnK) are drawn from a normal distribution with a meanµp (wherep is
the index of the package) and a varianceσ2.

In MML, a likelihood function is maximized where the students’ proficiency
parameters are integrated out of the likelihood. The marginal log-likelihood for
Model 1 is given by

L1 =
∑

p

∑

n|p
log

∫ ∏

i

p(xni|dni; θ)g(θ; µp, σ
2)dθ, (3.4)

wherexni is the observed grade,p(xni|dni; θ) is equal to (3.3) evaluated atxni if dni = 1,
and p(xni|dni; θ) = 1 if dni = 0. Further,g(θ; µp, σ

2) is the normal density with
parametersµp andσ2. The model can be identified by choosingµ1 = 0 andσ2 = 1.

The estimates can be computed using the software packages Multilog (Thissen,
Chen & Bock, 2002) or Parscale (Muraki & Bock, 2002). These packages com-
pute concurrent MML estimates of all the structural parameters in the model (the
β-parameters and the meansµp), and this is the approach that is also pursued in the
present article.

After the parameters of the examinations are estimated by MML, the missing
examination scores can be estimated by their posterior expectations, that is, by

E (Xni | xn) =

m∑

j=1

j
∫

p(Xni = j|dni = 1;θ) p(θ| xn)dθ, (3.5)

wherep(θ|xn) is the distribution ofθ given the observationsxn, andp(Xni = j|dni =

1;θ) is defined by (3.3). These expected scores are then imputed in (3.2).

Model 2
In the previous model it was assumed that the grade of studentn depended on a
unidimensional proficiency parameterθn. However, there may be more than one
proficiency factor underlying the grades. For instance, there might be a specific
proficiency factor for the science subjects and another one for language subjects. If
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Q proficiency dimensions are needed to model the grades, the proficiency can be rep-
resented by a vector of proficiency parameters

(
θn1, ..., θnq, ..., θnQ

)
. The probability

of a grade in categoryj is now given by

p (Xni = j|dni = 1;θn) =

exp

(
j

(
Q∑

q=1
αiqθnq

)
−∑ j

h=1 βih

)

1 +
m∑

h=1
exp

(
h

(
Q∑

q=1
αiqθnq

)
−∑h

k=1 βik

) . (3.6)

In addition, it will be assumed that the proficiency parametersθn, θn = (θn1, ..., θnq, ...,
θnQ) of groups of students taking a specific package of examination subjects have a
Q- variate normal distribution with a meanµp and a covariance matrixΣ. So it is
assumed that the mean depends on the examination package, and that the covariance
matrix of the proficiency parameters is common for all students. Takane and de
Leeuw (1987) show that the model is equivalent with a full-information factor anal-
ysis model. Therefore, the parametersαi1, ..., αiQ are often called factor-loadings,
and the proficiency parametersθn1, ..., θnq, ..., θnQ can be viewed as factor scores.
Note that the factor loadings are specific for an examination subject and that they
model the relation between the probability of obtaining a grade and the level on the
Q proficiency dimensions. A high positive value ofαiq means that theq-th dimension
is important for the subject, a value close to zero means that the dimension does not
play an important role.

The model is identified by settingµ1 = 0 and setting the diagonal ofΣ equal
to one. For a discussion of these and alternative identification restrictions refer to
Béguin and Glas (2001). The marginal log-likelihood of the model becomes

L2 =
∑

p

∑

n|p
log

∫ ∏

i

p(xni|dni; θ)g(θ; µp,Σ)dθ, (3.7)

wherexni is the observed grade,p(xni|dni; θ) is equal to (3.6) evaluated atxni if dni =

1, and p(xni|dni; θ) = 1 if dni = 0, andg(θ; µp,Σ) is the Q-variate normal density.
The parameters of the multidimensional model can be estimated using MML (see
Bock, Gibbons & Muraki, 1988) and the computer packages TESTFACT (Wood et
al., 2002), ConQuest (Wu, Adams & Wilson, 1997) or Mplus (Muthén & Muthén,
2003) can be used to compute the estimates.

Using the MML estimates of the parameters of the examinations, the missing
examination scores can be estimated by their posterior expectations analogously to
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(3.5), but the expectations are now with respect to aQ-variate posterior distribution
p(θ|xn), that is, by

E (Xni | xn) =

m∑

j=1

j
∫

..

∫
p(Xni = j|dni = 1;θ) p(θ| xn)dθ. (3.8)

Model 3
In Model 2 there is no interaction between the choice of an examination subject
and the proficiency parameters. That is, it is assumed that the process causing the
missing data does not need to be considered in the estimation process. Rubin (1976)
identified two conditions under which the missing data process can be ignored. A
missing data mechanism is ignorable if the missing values are missing at random
(MAR) and if the parameters of the distribution of the observed data (sayλ) and the
distribution of the missing data (sayϕ) are distinct. MAR holds if the probability of
the missing data patternp(d |xmis, xobs, ϕ ) does not depend on missing data, that is, if
p(d |xmis, xobs, ϕ ) = p(d |xobs, ϕ ). Distinctness entails that there are no functional
dependencies betweenϕ and the parameters of interestλ, or that ϕ and λ have
independent priors. If ignorability does not hold, the inferences made using an IRT
model ignoring the missing data process can be severely biased (Bradlow & Thomas,
1998; Holman & Glas, 2005).

A general method to deal with non-ignorable missing data proposed by Heckman
(1979) is the introduction of a selection model for the observations. Several authors
have applied this approach in the framework of IRT (Moustaki & O’Muircheartaigh,
2000; Moustaki & Knott, 2000; Holman & Glas, 2005) and have shown that selection
bias can be removed when the distribution ofdni is modelled concurrently with the
observed data using an IRT model. Their approach is adapted to the present problem
as follows. As in Model 2, the scores on the examination subjects are modelled
by (3.7). Further, it is assumed there exists a latent variableθQ+1, that governs the
choice of the examination subjects, that is, the realizations of the choice variable
defined by (3.1). If the students’ proficiency level is highly correlated with the choice
of examination subjects, thenθQ+1 will be highly correlated withθ1, ..., θQ also. The
dependence between the latent variables is modelled by assuming thatθ1, ..., θQ+1

have a multivariate normal distribution, again with a specific mean for every group of
students and a common covariance matrix. The marginal likelihood of the model is

L3 =
∑

p

∑

n|p
log

∫ ∏

i

[
p(xni|dni; θ

(Q))p(dni; θQ+1)
]
g(θ; µp,Σ)dθ, (3.9)
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whereθ(Q) = (θ1, ..., θQ), andθ = (θ1, ..., θQ+1).
The correlation betweenθQ+1 and the proficiency dimensionsθ1, ..., θQ describe

the extent to which the choice of an examination subject depends on the proficiency
level. So if, for example, the correlation betweenθ1 andθQ+1 is positive, a high level
on proficiency dimensionθ1 is positively related with endorsing subjects that load
high on dimensionθ1. Further, the magnitude of the correlations betweenθ1, ..., θQ

andθQ+1 give an indication of the extent to which ignorability is violated. If these
correlations are close to zero, the choice behavior is not related to proficiency, and
the missing data are ignorable. If, on the other hand, these correlations are substantial
the choice variable is highly related to the proficiency for the students. Holman and
Glas (2005) show that the bias in the parameter estimates is positively related to
the correlation between the latent proficiency and the parameters of the IRT model
for the missing data indicatordni and that this bias vanishes when the observations
and the realizations of the missing data indicators are concurrently modelled by the
multidimensional IRT model described here.

The final consideration is about the model for the choice variablesdni. Since the
students can only chose a limited number of subjects, it is reasonable to assume that
the probability of choosing a subject as a function of the proficiency dimensionθQ+1

is single peaked: Students will probably chose subjects within a certain region of the
proficiency dimensionθQ+1 and avoid subjects that are too difficult or too easy. An
IRT choice model that may reflect this, is given by

p (dni = 1) = πi1(θ(Q+1)n) − πi2(θ(Q+1)n) (3.10)

where

πi j (θ(Q+1)n) =
exp

(
θ(Q+1)n − γi j

)

1 + exp
(
θ(Q+1)n − γi j

) , (3.11)

andγi1 < γi2 to guarantee thatPr(dni = 1) is positive. The model considered here
is closely related to models by Verhelst and Verstralen (1993) and Andrich and Luo
(1993, also see Andrich, 1997). These two models share with the model given by
(3.10) the property of a single-peaked response probability, only the functional form
of the probability is chosen differently. The model by Verhelst and Verstralen (1993)
is derived from the partial credit model; the model by Andrich and Luo (1993) has
a hyperbolic cosine function probability function. The motivation for the present
model is its simple functional form.

The model given by (3.10) is also related to a special case of the graded response
model by Samejima (1969, 1993). The graded response model pertains to a polyto-
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mously scored response variable, for instance, a response variableyni that assumes
the values 0, 1 or 2. The response probabilities are given by

Pr(yni = 0) = 1− πi1(θ),

Pr(yni = 1) = πi1(θ) − πi2(θ),

Pr(yni = 2) = πi2(θ),

with πi j (θ) as defined by (3.11). So model (3.11) can be derived from the graded
response model by noting that the responsesyni = 0 andyni = 2 are extreme cases
and collapsed todni = 0.

Estimation procedures for a model that is a mixture of the logistic IRT model
defined by (3.6), the collapsed graded response model defined by (3.10), and a(Q+1)-
variate normal model for the proficiency parameters are not readily available. In
Appendix A, the marginal maximum likelihood (MML) procedure used to calculate
the estimates reported below is outlined. Estimation of the missing examination
scores is analogously to their estimation in Model 1 and Model 2, except that the
expectations are now with respect to aQ + 1-variate posterior distributionp(θ|xn).

3.2.3. Model Fit

Likelihood ratio testing is the standard methodology for model comparison, and this
methodology will also be applied below. However, these tests are rather global and
give, for instance, no information with respect to the fit of specific examination
subjects. In principle, IRT models can be evaluated by Pearson-type statistics, that
is, statistics based on the difference between observations and their expectations
under the null-model. Such statistics are available for unidimensional models for
dichotomous observations (Orlando & Thissen, 2000; Glas & Suarez-Falcon, 2003),
for unidimensional models for polytomous observations (Glas, 1998, 1999), and for
multidimensional models for such observations (te Marvelde, Glas, Van Landeghem,
& Van Damme, 2006). In the present article, a comparable fit statistic will be pre-
sented that is targeted at the special application considered here.

Most item fit statistics are based on splitting up the sample of respondents into
subgroups with different proficiency distributions and evaluating whether the item
response frequencies in these subgroups differ from their expected values. Orlando
and Thissen (2000) point out that the splitting criteria should be directly observable
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(for instance, number correct scores) rather than estimated (for instance, estimated
proficiency). Following this suggestion, we split up the sample of students using a
splitter examination labelleds. Two subgroups are formed, one subgroup of students
that did choose subjects (sodns = 1) and subgroup of students that did not choose
subjects (sodns = 0). The test is based on the assumption that this criterion splits
the sample up in two subgroups with different proficiency distributions. We compute
the average grade on number of students with a gradej on examinationi in both
subgroups as

Si0 =


∑

n

(1− dns)dnixni

 /

∑

n

(1− dns)dnimi



and

Si1 =


∑

n

dnsdnixni

 /

∑

n

dnsdnimi

 .

wheremi is the maximum grade on examinationi, somi = 3 for all i. These average
grades can be compared to their expected values given by

Ei0 =


∑

n

(1− dns)dniE (Xni | xn)

 /

∑

n

(1− dns)dnimi



and

Ei1 =


∑

n

dnsdniE (Xni | xn)

 /

∑

n

dnsdnimi

 ,

whereE (Xni | xn) is given by (3.8).

In Appendix it is shown that a Pearson-type fit-statistic bases on the squared
differences between observed and expected values can be used to evaluate whether
the observed and expected response frequencies are acceptably close given (the ob-
served value on the choice variable of the splitter examination). In Appendix it is
also outlined that the statistic has an asymptoticχ2 distribution with one degree of
freedom. However, the application presented below has a very large sample size and
the power of the test becomes very large. Therefore, the test will be used to compare
the relative model fit of nested models. More specifically, the test will be used to
evaluate whether Model 3 fits the data systematically better than Model 2.
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3.3. An Example

3.3.1. The Data

The data used to illustrate the advantage of IRT in the present setting are from
approximately 18-year old students of pre-university schools in the Netherlands. This
is the only curriculum track (of the four available) that gives students the opportunity
for direct entry into a university. The external examinations are standardized nation-
wide achievement tests. The students take examinations in 7 or 8 subjects chosen
from the list of subjects displayed in Table 3.1. The data used in this study were
collected by the Dutch Inspection of Education. For this study only the results
from the first session of the examinations were used (unsatisfactory marks might
be “repaired” in a re-session). The data are a subset of the data of pre-university
students that took their final examination in the school year 1994/1995. The original
data set comprised 16,118 students. To keep the presentation of the results relatively
simple, the analysis was restricted to 60 fairly common combinations of examination
subjects. The resulting data set consisted of the examination results of 6142 students.
The distribution of the students over examination subjects in the original data and the
selected data are shown in Table 3.1.

Below, the appropriateness of the methods for computing adjusted GPAs will
be assessed by evaluating the consequences of the method in subgroups. From the
combinations of different subjects chosen by the students, we distinguish three main
groups:

1. The linguistically-oriented students (20%). These students definitely take
examinations in French and German language, and not more than one of the subjects
like Applied Mathematics, Advanced Mathematics, Physics and Chemistry.

2. The science-oriented students (33%). These students definitely take examina-
tions in at least three of the subjects like Applied Mathematics, Advanced Mathemat-
ics, Physics and Chemistry and no examinations in French or German languages.

3. All other students (47%).
The original grades ranged from 1 (“poor”) to 10 (“excellent”), but for the pur-

pose of our study these were re-scaled to a four point scale, where the points are 0
(original grade 0 to 5.4, which is unsatisfactory), 1 (original grade 5.5 to 6.4, which
is just satisfactory), 2 (original grade 6.5 to 7.4, which is good), and 3 (original grade
7.5 to 10, which is very good). The overall observed mean examination scores and the
mean examination scores observed in the three subgroups are displayed in Table 3.2.

The following observations are of interest. Note that students with a science-
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Table 3.1: Distribution of students over examination subjects in original
data set (N = 16,118) and analysis data set (N = 6,142)

Subjects Percentage Percentage Subjects Percentage
Selected Original Data Selected Data Not Selected Original Data
Dutch language 99.9 100.0 Frisian language 0.0
Latin 14.6 10.3 Russian 0.0
Classical Greek 6.2 4.1 Spanish 0.2
French 37.6 36.6 Handicrafts 1.9
German 45.4 44.5 Music 1.6
English 99.1 100.0 Philosophy 0.7
History 49.5 48.8 Social studies 2.3
Geography 33.9 31.3
Applied Math 63.0 65.1
Advanced Math 44.7 40.2
Physics 46.7 42.5
Chemistry 38.2 39.9
Biology 37.0 33.3
General Economy 58.7 66.6
Business Economy 36.0 37.9
Arts 7.8 5.5

oriented package score lower on Dutch and English language than the students with a
language-oriented package. On the other hand, students with a science-oriented pack-
age score substantially higher on Applied Mathematics than students with a language-
oriented package. This is a first indication that the proficiency dimension might not
be unidimensional. Further, the score of French and German may be boosted relative
to the score on Dutch and English language by the absence of the students with a
science oriented package, who seem to have a lower language proficiency than the
other students. The IRT analyses presented below will clarify these observations.

3.3.2. Results

Model 1

Model 1 was estimated by MML, that is, by maximizing (3.4). The estimates of the
parametersαi andβi j ( j = 1, ...,mi) are given in Table 3.3. The last column of the
table gives the average of the estimates of the parametersβi j ( j = 1, ...,mi), denoted
by β. This average is an estimate of the global position of subjectj on the latent scale,
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Table 3.2: Observed examination scores per subject and per package
Subjects Overall Science Language Mixed
Dutch Language 1.38 1.29 1.53 1.37
Latin 2.47 2.36 2.44 2.70
Classical Greek 2.18 2.07 2.18 2.32
French 1.63 — 1.68 1.57
German 1.50 — 1.51 1.50
English 1.50 1.38 1.64 1.51
History 1.58 1.87 1.52 1.55
Geography 1.31 1.88 1.11 1.34
Applied Math 1.15 2.28 0.71 0.91
Advanced Math 1.37 1.37 — 1.36
Physics 1.50 1.47 — 1.59
Chemistry 1.76 1.76 — 1.75
Biology 1.75 1.71 — 1.91
General Economy 1.27 1.73 0.92 1.25
Business Economy 1.41 1.84 1.39 1.30
Arts 1.60 1.75 1.56 1.57

and serves as an indication of the average difficulty of the subject.

Note that Dutch language and Art are the least discriminating with respect to
the overall proficiency and Physics and Chemistry have the highest discrimination.
Inspection of the values ofβ in the last column shows that Advanced Mathematics is
now slightly more difficult than Applied Mathematics. This result is contrary to the
result in Table 3.2, where the overall average of Advanced Mathematics is higher than
the overall average of Applied Mathematics (1.37 versus 1.15). This phenomenon is
of course explained by the fact that the students with a language-oriented package do
not take Advanced Mathematics.

Using the MML estimates, posterior expectations as defined by (3.5) were im-
puted for the missing examination scores. The results are given in Table 3.4. The
average scores in the table can be interpreted as the average scores obtained if all
students endorsed all subjects. The most dramatic effect is the decrease of the av-
erage scores for the classical languages Latin and Greek. The explanation may be
that the small percentage of the students that actually choose these subjects (10.3%
and 4.1%) are highly proficient. Adding imputed values for the other students (of
lower proficiency) can only lower this average. This explanation is in line with the
experience in Dutch education.
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Table 3.3: Parameter estimates for Model 1
N α β1 β2 β3 β

Dutch language 6142 0.38 -0.97 0.10 1.38 0.17
Latin 637 0.65 -1.95 -1.18 -0.17 -1.10
Classical Greek 256 0.68 -1.36 -0.65 0.57 -0.48
French 2250 0.91 -1.24 -0.28 0.71 -0.27
German 2739 0.99 -1.22 -0.05 0.86 -0.14
English 6142 0.63 -0.79 -0.03 0.79 -0.01
History 2997 0.83 -1.31 -0.24 0.92 -0.21
Geography 1928 0.71 -1.22 0.14 1.41 0.11
Applied Math 4002 0.59 -0.42 0.33 1.01 0.31
Advanced Math 2471 0.91 -0.51 0.44 1.23 0.39
Physics 2614 1.38 -0.90 0.29 1.51 0.30
Chemistry 2452 1.37 -1.14 -0.15 0.97 -0.11
Biology 2048 1.03 -1.77 -0.25 1.35 -0.22
General Economy 4092 0.87 -0.82 0.23 1.30 0.24
Business Economy 2330 0.90 -1.10 -0.01 1.21 0.03
Arts 338 0.37 -1.60 -0.22 1.06 -0.26

An unexpected result were the imputed means for French and German language
for the students with a science-oriented package. In Table 3.3 it can be verified that
these students did not choose these two languages in their examination package. In
Table 3.4 it can be verified that these students score relatively low on Dutch and
English language, (1.29 and 1.38, respectively) yet the imputed means on French
and German language are quite close to the mean scores for the students with a
language-oriented package. The opposite phenomenon occurred with the imputed
values for Advanced Mathematics, Physics, Chemistry, and Biology for the students
with a language-oriented package. The imputed means were all close to the means for
the other students, yet their (generally observed) score on Applied Mathematics was
as low as 0.87. This is highly unexpected. In the sequel, it will become clear that this
phenomenon is attributable to the multidimensionality of the proficiency variables.

Model 2

A three-dimensional version of Model 2 was fitted with a method developed by
Béguin and Glas (2001). The method identifies the dimensions by fitting unidi-
mensional IRT models by discarding items, or, in the present case, examination
subjects. These examination subjects are entered as unique indicators of a dimension
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Table 3.4: Examination scores per subject and per package estimated under
Model 1
Science Language Mixed

Dutch Language 1.29 1.53 1.37
Latin 1.90 1.86 1.83
Classical Greek 1.61 1.58 1.57
French 1.58 1.68 1.56
German 1.55 1.51 1.51
English 1.38 1.64 1.51
History 1.63 1.53 1.55
Geography 1.53 1.31 1.42
Applied Math 1.76 0.87 1.01
Advanced Math 1.37 1.37 1.38
Physics 1.47 1.41 1.46
Chemistry 1.74 1.46 1.54
Biology 1.67 1.48 1.56
General Economy 1.57 1.04 1.28
Business Economy 1.58 1.44 1.38
Arts 1.69 1.61 1.63

in the multidimensional IRT model, that is, these examination subjects load on one
dimension only. Examination subjects that do not fit one dimension uniquely are
allowed to load on all dimensions. In the present application, the unidimensional
subscales were searched for with the program OPLM (Verhelst, Glas & Verstralen,
1995). TheR1c statistic (Glas, 1988) was used as a criterion for model fit. Then,
given the factor loadings fixed to zero in the previous stage, an MML estimate was
made of the subject parameters and the correlation matrix.

The results are shown in Table 3.5 under the heading “Factor Solution Model 2”.
The factor loadings fixed to zero are marked by an asterisk. The three dimensions that
appeared can be interpreted as “Language”, “Science”, and “Economy”. Arguments
for this interpretation are the fact that “Dutch” loads high on the first, and very low
on the second dimension, while “Advanced Mathematics” loads mildly negative on
the first, and high on the second dimension. Examination subjects that do not load
according to expectation are Latin and Classical Greek (that both load high on the
Language and Economy dimension). Note that History loads on all three dimensions,
Arts loads low on the Language dimension, and Geography has a high loading on the
Science dimension. The correlation matrix of the three latent dimensions is shown at
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the bottom of the table. Note that the correlation between the Science and Economy
dimension is substantially higher than the other two correlations.

Next, using the MML estimates of the parameters of Model 2, the missing scores
could be estimated by their posterior expected values. The results are given in Ta-
ble 3.6 under the heading Model 2. Again, the average scores in the table can
be interpreted as the average scores obtained if all students endorsed all subjects.
An important implausible finding using Model 1 was that the expected grades for
the language-oriented group on Advanced Mathematics, Science, Chemistry and
Biology were higher than the grades of the science-oriented group. Inspection of
the analogous estimated averages computed using Model 2 displayed in Table 3.6 6
show that these estimates do not suffer from this phenomenon. Also the estimates for
French and German language for the science oriented group are now lower than the
analogous estimates in Table 3.4.

Model 3

Above, it was argued that the free choice of examination subjects lead to a stochastic
design that might violate the assumption of ignorability. Therefore, Model 3 was
derived from Model 2 by adding a special dimension to model the missing data
indicatorsdni as defined in (3.1). The MML estimates of the parameters of Model
3 were obtained by maximization of (3.9); the results are shown in Table 3.5 under
the heading “Factor Solution Model 3”. Note that the patterns of the factor loadings
and the correlation matrices for the first three dimensions for Model 2 and Model 3
are analogous. Since the fourth dimension, that is, the latent dimension describing
the choice process is modelled by the model given by Formula (3.11), displaying
the factor loadings is little informative, since they are all equal to one. Therefore,
the average of the two subject parameters, that is,γi = (γi1 + γi2)/2 are displayed
for all subjects in the last column labelled “Choice”. The parametersγi can be seen
as an estimate of the location of the subject on this fourth proficiency dimension.
Note that the parameters for Dutch and English cannot be estimated, because these
two examination subjects are obligatory and so all the choice variablesdni for these
examination subjects are structurally equal to one and the parametersγi j related to
these subjects cannot be estimated.

The interpretation of the mean parametersγi is as follows. The fourth dimen-
sion correlates positively with the three proficiency dimensions, and highest with
the Science dimension. This dimension can be viewed as an overall proficiency
dimension, and the choice of subjects is assumed governed by proficiency. Since the
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Table 3.5: Factor Loading per Subject for the Three- and Four-Factor
Solution and Correlation Matrices

Factor Solution Model 2 Factor Solution Model 3
L* S E L S E Choice

Dutch Language 2.22 -0.05 0.45 1.91 -0.09 0.44 —
English 6.97 0.00* 0.00* 5.46 0.00* 0.00* —
Latin 3.14 -0.22 1.89 2.88 -0.32 1.67 -0.76
Classical Greek 2.31 0.03 2.75 2.32 -0.20 1.46 -1.12
French 7.26 0.00* 0.00* 6.11 0.00* 0.00* -0.89
German 9.27 0.00* 0.00* 7.79 0.00* 0.00* -0.62
History 2.04 1.31 2.06 1.86 -0.23 2.18 -0.19
Geography 0.00* 6.12 0.00* 0.00* 3.23 0.00* 0.26
Applied Math 0.00* 3.63 0.00* 0.00* 4.69 0.00* 0.01
Advanced Math -0.76 5.84 0.09 -0.64 4.25 0.12 0.43
Physics 0.00* 9.03 0.00* 0.00* 6.01 0.00* 0.76
Chemistry 0.00* 8.86 0.00* 0.00* 6.57 0.00* 0.89
Biology 0.00* 6.62 0.00* 0.00* 5.09 0.00* 1.24
General Economy 0.00* 0.00* 7.78 0.00* 0.00* 3.42 -0.31
Business Economy 0.00* 0.00* 6.99 0.00* 0.00* 4.26 -0.13
Arts 1.23 0.03 1.06 1.15 0.08 0.49 0.56
Correlation matrix
Language 1.00 1.00
Science 0.51 1.00 0.43 1.00
Economy 0.45 0.81 1.00 0.48 0.84 1.00
Choice dimension 0.12 0.74 0.56 1.00
Fixed factor loadings
* L, S, and E denote Language, Science, and Economy respectively.

‘difficulty parameters’γi are an estimate of the location of the subjects on the fourth
proficiency dimension, they represent the ordering of the examination subjects on this
dimension. That is, “difficult subjects” as Biology (γi = 1.24), Chemistry (γi = 0.89)
and Advanced Mathematics (γi = 0.43) are endorsed by the more proficient students.
Note that also Arts (γi = 0.56) scores high on this dimension.

As for the other two models, also for Model 3 the missing scores were estimated
by their posterior expectations. The averages computed assuming all students en-
dorsed all subjects are given in Table 6 under the heading Model 3. Also the estimates
under Model 3 do not show the implausible results obtained under Model 1. In
Table 3.6, it can also be verified that the estimates for Model 2 and Model 3 did
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Table 3.6: Examination scores per subject and per package estimated under
Model 2 and Model 3

Model 2 Model 3
Science Language Mixed Science Language Mixed

Dutch Language 1.29 1.53 1.37 1.29 1.53 1.37
Latin 1.80 1.78 1.78 1.85 1.79 1.83
Classical Greek 1.54 1.48 1.56 1.49 1.62 1.64
French 1.45 1.68 1.54 1.44 1.69 1.58
German 1.41 1.51 1.49 1.35 1.50 1.51
English 1.38 1.64 1.51 1.38 1.64 1.51
History 1.66 1.52 1.59 1.72 1.62 1.69
Geography 1.88 1.26 1.50 1.85 1.11 1.41
Applied Math 1.97 0.88 1.09 1.86 0.82 1.03
Advanced Math 1.36 0.81 1.03 1.36 0.81 1.17
Physics 1.47 0.92 1.15 1.46 0.75 1.04
Chemistry 1.75 1.00 1.25 1.75 0.85 1.17
Biology 1.69 1.06 1.31 1.72 0.97 1.28
General Economy 1.50 1.03 1.31 1.45 1.02 1.24
Business Economy 1.49 1.29 1.37 1.43 1.22 1.30
Arts 1.64 1.59 1.65 1.57 1.87 1.85

not substantially differ.

3.3.3. Model Fit

First, the fit of the three models was compared using likelihood ratio tests. A test of
Model 1 against Model 2 yielded an chi-square value of 2070.1 with 135 degrees of
freedom. So Model 1 had to be rejected. To facilitate the test of Model 3 against
Model 2, both models have to refer to the same data. For Model 3, these data
comprise of the subject scores and the choice variables. Therefore, Model 2 was
enhanced with an independent the choice model by the from of (3.11) for the variables
dni. Then the likelihood was computed as the product of the likelihood under Model 2
multiplied by the likelihood of the choice model for the variablesdni. The test of this
enhanced model against Model 3 is equivalent with testing whether the covariances
between the latent variables associated with the observations and the latent variables
associated withdni are zero. The test statistic has a value of 312.2, with 3 degrees
of freedom. The conclusion is that Model 3 fitted significantly better than Model 2.
However, as noted above, the impact of this better model fit was quite small.
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Table 3.7: Model fit evaluated usingTi-statistic
Splitter Advanced Math History Business Economy

Model 2 Model 3 Model 2 Model 3 Model 2 Model 3
Dutch Language 84.0 31.0* 58.9 9.3* 106.8 38.3*
Latin 9.0 1.3* 12.0 6.4* 13.3 4.4*
Classical Greek 0.7 1.2 1.0 0.2* 1.0 1.1
French 2.1 0.0* 25.2 15.4* 41.3 34.2*
German 0.1 1.5 52.9 47.7* 63.0 50.2*
English 48.9 34.9* 69.4 48.8* 125.1 98.8*
History 1.5 1.4* 79.8 56.4*
Geography 4.4 2.5* 176.5 113.0* 89.4 33.0*
Applied Math 25.7 70.6 17.8 20.2 90.0 35.2*
Advanced Math 22.7 6.9* 17.4 21.1
Physics 19.7 4.2* 10.5 2.4* 23.7 12.2*
Chemistry 67.3 22.8* 22.6 6.1* 0.9 0.4*
Biology 7.4 5.3* 125.3 117.8* 7.3 4.9*
General Economy 9.4 4.5* 91.4 49.0*
Business Economy 1.8 1.2* 4.0 2.6 2.6 5.5
Arts 11.5 9.4* 13.4 13.6 15.0 9.0*
* indicates better fit for Model 3

Likelihood ratio tests are global tests that give an impression of overall model
fit. They do no provide information on the fit of the individual examination subjects.
Therefore, theTi-statistic as defined in (3.15) was computed for all examinations
i = 1, ..., 16, both under Model 2 and Model 3. Three splitter-examinations were used:
Advanced Mathematics, History and Business Economy. The results are displayed
in Table 3.7. Above it was argued that the absolute values of the test statistics were
less interesting due to the large sample sizes. The statistics have an asymptoticχ2-
distribution with one degree of freedom, and in Table 3.7 it can be seen that most are
significant (the 5% critical value is 3.84). More informative for the comparison of the
two models is their difference in model fit. In Table 3.7, all instances where Model 3
fitted better than Model 2 are marked with an asterisk. In 36 of the 45 cases, Model 3
fitted better than Model 2. So also here the overall conclusion is that Model 3 showed
the best fit.
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3.4. Discussion and Conclusion

The problem addressed concerns the comparison of examination grades in case stu-
dents have chosen different subjects. The complicating factor is that students only sit
examinations in those subjects they have chosen themselves. As a consequence more
proficient students may choose examinations in subjects that are more or the less
bright students may choose less difficult subjects. However, it is not a-priori plausible
that the proficiency structure assessed is unidimensional. This was corroborated by
the implausible result that the language oriented students had better expected grades
in Advanced Mathematics, Physics and Chemistry than the science oriented students
when a unidimensional model was used to compute overall scores. Therefore, a
multidimensional IRT model for polytomous items, the generalized partial credit
model, was fitted to the data. The three-dimensional model had a substantially better
fit than the unidimensional model. Furthermore, the implausible result of the high
expected grades in Mathematics and Science for the language oriented students now
vanished.

Another problem addressed related to the fact that it is not a-priori plausible that
the missing data (the grades for the examination subjects that were not chosen) are
missing at random. In other words, it was expected that the missingness indicators
correlated with the proficiency level in such a way that this might bias the estimates
of the difficulty of the examination subjects. It was attempted to remove this bias
by using a four-dimensional IRT model, where the first three dimensions are related
to the observed grades, while the fourth dimension is related to the observed choice
of students. Though this model fitted the data significantly better than the three-
dimensional model, the expected grades computed using the two models were very
close.



3.A. MML Estimates for the Choice Model and an LM Test for Model Fit 47

Appendix

3.A. MML Estimates for the Choice Model and an LM Test
for Model Fit

In this appendix it will be shown how the choice model defined by (3.10) and (3.11)
can be incorporated in the existing MML estimation procedures for multidimensional
IRT models as developed by Bock, Gibbons and Muraki (1988). The purpose is to
concurrently compute estimates of the item parameters and the mean and covariance
matrix of the distribution of the person parametersθ, by maximizing a likelihood
function that is marginalized with respect to these person parametersθ. So letξ be
the vector of the estimands, that isξ = (α, β, γ, µθ, vec(Σθ)), whereα andβ are vectors
of the item parameters of the response model given by (3.6),γ is a vector of the item
parameters of the choice model given by (3.10) and (3.11), andµθ andvec(Σθ) are a
vector of the mean and a vector of the variances and covariances ofθ. Usually, the
model is identified by settingµθ equal to zero, and fixing a number of elements inα

(for details refer to Holman and Glas, 2005), so these parameters are not estimated
but fixed.

The marginal log-likelihood function is given by

logLY (ξ) =
∑

n

log p (yn; ξ)

whereyn is a vector with elementsyni andyni can either be the gradexni or the choice
dni of the studentn. The probability ofyn is given by

p (yn; ξ) =

∫
· · ·

∫ ∏

k

p (ynk |θn ) g (θn |Σθ ) dθ,

whereg (θn |Σθ ) is the density ofθn which assumed to follow a multivariate normal
distribution with mean vector0 and variance-covarianceΣθ. The maximum of the
log-likelihood function can be found by solving∂ logL (ξ,Y) /∂ξ = 0.

The first order derivatives of the log-likelihood function for MML estimation
can be found using Fisher’s identity (Louis, 1982). In the IRT framework, Fisher’s
identity is given by

h (ξ) =
∂

∂ξ
logLY (ξ) =

∑

n

E (bn(ξ)|yn, ξ) , (3.12)
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where the expectation is with respect to the posterior expectationp (θn |yn, ξ ), and

bn (ξ) =
∂

∂ξ
log p (yn, θn; ξ) =

∂

∂ξ

[
log p (yn|θn, α, β, γ) + logg (θn; µθ,Σθ)

]

(see, for instance, Glas, 1992). Notice that the derivative is a sum of the logarithm
of the probability the response pattern and the logarithm of the density of the student
proficiency parameter. The power of Fisher’s identity is that the derivatives are simply
to derive, while the derivation ofh (ξ) is a cumbersome enterprize. For instance, it is
well know that the maximum likelihood estimate of a covariance matrix is obtained
as

Σθ =
1
N

∑

n

θnθ
t
n.

Inserting this into (3.12) results in

Σθ =
1
N

∑

n

E
(
θnθ

t
n |yn, ξ

)
(3.13)

where

E
(
θnθ

t
n |yn, ξ

)
=

∫
...

∫
θnθ

t
n f

[
θn |yn,Σθ

]
dθn

and the posterior density has a form

f
[
θn |yn,Σθ

]
=

∏
k

p (ynk|θn) g (θn |Σθ ) .
∫
· · ·

∫ ∏
k

p (ynk|θn) g (θn |Σθ ) dθn
.

The likelihood equations for the item parameters of the choice model,γi1 andγi2, are
also easily found by using Fisher’s identity. The probability of the choice patterndn

of studentn givenθ and the item parametersγ is

P (dn|θ, γ) =

k∏

i=1

Pi (θ)dni (1− Pi (θ))1−dni

wherePi (θ) = πi1 (θ)− πi2 (θ) whereπi1 andπi2 are given by Formula (3.11), and the
logarithm of this function is

logP (dn|θn, γ) =

k∑

i=1

[
dni log(Pi (θn)) + (1− dni) log(1− Pi (θn))

]
.
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Using the short-hand notationPi = Pi (θn) ,for j = 1 and j = 2 we have

∂ logPi

∂γi j
=

[
dni

1
Pi

∂Pi

∂γi j
− (1− dni)

(1− Pi)
∂Pi

∂γi j

]

with
∂Pi
∂γi j

=
∂πi1

∂γi j
− ∂πi2

∂γi j

Let δk j denote the Kronecker symbol, that is equal to one ifk = j and equal to zero if
k , j. Then

∂πik

∂γi j
= −δk j(πik(1− πik))

and
∂πi1

∂γi j
− ∂πi2

∂γi j
= −δ1 j(πi1(1− πi1)) + δ2 j(πi2(1− πi2).

Substitution of this expression into (3.12) and dropping the short-hand notation we
obtain the equations

h (γi1) =
∂

∂γi1
logLY (ξ) = −

∑

n

E

(
(dni − Pi (θn))

πi1 (θn) (1− πi1 (θn))
Pi (θn) (1− Pi (θn))

∣∣∣∣∣ yn, ξ

)
= 0,

and

h (γi2) =
∂

∂γi2
logLY (ξ) =

∑

n

E

(
(dni − Pi (θn))

πi2 (θn) (1− πi2 (θn))
Pi (θn) (1− Pi (θn))

∣∣∣∣∣ yn, ξ

)
= 0,

for i = 1, ..., k. In the analysis presented in this article, these equations were solved
simultaneously with the well-known MML equations for the item parameters of the
multidimensional version of the GPCM and the MML equation for the covariance
matrix given by (3.13).

Fit of IRT models can be evaluated using the Lagrange Multiplier (LM) test (Glas,
1998, 1999; Glas & Suarez-Falcon, 2003; te Marvelde, Glas, Van Landeghem, & Van
Damme, 2006). The LM test can be used to test an IRT model against a more general
alternative, which is an IRT model with additional parameters. The LM statistic is
evaluated using the MML-estimates of the special IRT model only. The statistic is
asymptotically chi-square distributed with degrees of freedom equal to the number
of fixed parameters. With a proper choice of alternative model, the LM test becomes
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a test based on residuals, that is, a test based on differences between observed and
expected frequencies.

As the alternative model we choose

p (Xni = j|dni = 1;θn) =

exp

(
j

(
Q∑

q=1
αiqθnq

)
−∑ j

h=1 βih + dns jδ

)

1 +
m∑

h=1
exp

(
h

(
Q∑

q=1
αiqθnq

)
−∑h

k=1 βik + dnshδ

) , (3.14)

for j = 1, . . . ,mi . In the model under the null hypothesis, the additional parameters
δ j are equal to zero and the model is equivalent with the multidimensional GPCM
given by (3.6).

Following Glas (1999) it can be inferred that the first order derivative of the
likelihood with respect toδ j is given by

vi =
∑

n

dnsdnixni −
∑

n

dnsdniE (Xni|θ) xn) ,

A test for the null-hypothesisδ = 0 can be based on the fit-statistic

Ti = v2i /wi (3.15)

wherewi is the variance matrix ofvi , which is the opposite of the second order
derivatives of the likelihood function with respect to theδ-parameter. If the statistic
Ti is evaluated usingδ = 0, that is, using the MML-estimates of the null-model,Ti

has an asymptoticχ2 distribution with one degree of freedom (see Glas, 1999; te
Marvelde, Glas, Van Landeghem, & Van Damme, 2006).
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Test Statistics for Models for
Continuous Item Responses

ABSTRACT: The theory of estimating and testing item response models
for continuous responses is developed in a marginal maximum likelihood
framework. It is shown that the fit to the model can be evaluated using
Lagrange multiplier tests. The tests focus on the assumed form of the
response functions, differential item functioning, local stochastic inde-
pendence and the factor structure underlying the responses. The tests
are illustrated with an example of the analysis of data from central ex-
aminations in secondary education in the Netherlands. Using simulation
studies, it is shown that the tests have good properties in terms of control
of Type I error rate and power.
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4.1. Introduction

Item response theory (IRT) models are stochastic models for two-way data; say the
responses of students to items. An essential feature of these models is parameter
separation, that is, the influences of the items and students on the responses are
modeled by distinct sets of parameters. IRT provides the theoretical underpinning
for computer adaptive testing, the use of incomplete assessment designs, equating
and linking of assessments, evaluation of differences between groups and differential
item functioning. Most applications of IRT models pertain to categorical data (Rasch,
1960; Samejima, 1969; Bock, 1972; Lord, 1980; Masters, 1982). However, also
situations may arise where the responses to the items are continuous. An example is
the so-called analogous-scale item format where a respondent marks the position on
a line to express his or here opinion about some topic.

IRT models for continuous responses are outlined by such authors as Mellenbergh
(1994), Moustaki (1996) and Skrondal and Rabe-Hesketh (2004). The present article
focuses on testing the models for continuous responses. A method for testing model
fit will be proposed in the framework of multidimensional IRT models for conti-
nuous responses and marginal maximum likelihood (MML) estimation. The model
assumptions evaluated are subpopulation invariance (the violation is often labeled
differential item functioning), the form of the item response function, local stochastic
independence and the factor structure of the model. An analysis pertaining to scaling
students’ scores on a number of examination topics will be given as an example of
the methods proposed. Finally, a number of simulation studies will be presented that
assess the Type I error rate and the power of the proposed tests.

4.2. The Model

Consider a two-dimensional data matrixX with entriesxnk, for n = 1, ...,N, and
k = 1, ...,K. The matrix contains the responses of students to items. It is assumed
that the response of the studentn on the itemk is normally distributed, that is

P(xnk | θn, αk, βk ) =
1√

2πσ2
k

· exp

−
(xnk − τnk)2

2σ2
k

 . (4.1)
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The expectation of the item response is a linear function of the explanatory variables,

τnk =

H∑

h=1

αkhθnh− βk

= α′kθn − βk, (4.2)

whereαk is a vector of the parametersαk1, ..., αkh, ..., αkH which are usually called
factor loadings andβk is a location parameter. Further,θn = (θn1, ..., θnh, ..., θnH) is
theH-dimensional proficiency parameter of studentn. We assume that the density of
θn is described by the normal distribution with the expectationµθ and the covariance
matrix Σθ. The distribution will be denoted byg (θn; µθ,Σθ) . The model is in part
identified by the restrictionµθ = 0. Additional restrictions must be imposed to
completely identify the model. The restrictions will be returned to below. Further, we
assume that the varianceσ2

k = 1, for all k. That is, we assume that all the observed
responses have the same scale.

In the case of discrete responses, the data are the response patterns of the stu-
dents, and these counts are seldom, if ever, transformed. In the case of continuous
responses, transformations can be applied to the responses. For instance, if the model
given by (4.1) is used to analyze response times, the observationsxnk should be the
logarithms of the response times.

4.3. Estimation

To introduce the test statistics and to derive their asymptotic distributions, first some
theory on MML estimation for IRT models (see Bock & Aitkin, 1982) must be
outlined.

Preliminaries
Let η be a vector of model parameters, that is,η consists of the vectorsα, β, µθ,
andvec(Σθ), wherevec(Σθ) is a vector containing the diagonal and lower-diagonal
elements ofΣθ. The marginal log-likelihood function can then be written as

logL (η,X) =
∑

n

log Pr(xn; η) (4.3)

wherexn is the response pattern of the studentn. The MML estimation equations are
derived upon equating the vector of derivatives of the log-likelihood function to zero.
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The first order derivatives can be derived using Fisher’s identity (Louis, 1982). In the
framework of IRT, Fisher’s identity is given by

h (η) =
∂

∂η
logL (η,X) =

∑

n

E (bn(η)|xn, η) , (4.4)

where the expectation is with respect to the posterior expectationp (θn |xn, η ). Further

bn (η) =
∂

∂η
log p (xn, θn; η) =

∂

∂η

[
log p (xn|θn, α, β) + logg (θn; µθ,Σθ)

]
. (4.5)

Notice that the derivative is a sum of the logarithm of the probability of the response
pattern and the logarithm of the density of the student ability parameter. The power of
Fisher’s identity is that the derivatives are very easy to derive, while the derivation of
h (η) is a cumbersome enterprise (Glas, 1999; te Marvelde, et al., 2006). Moreover,
direct derivation of the matrix of second order derivatives needed for the computation
of the standard errors of the estimates is even more demanding. However, using
Fisher’s identity repeatedly, Louis (1982) shows that the Fisher information matrix

H (η, η) = −∂
2L (η,X)
∂η∂η′

, (4.6)

is the sum over studentsn of terms

−E (Bn(η, η)|xn, η) − E
(
bn(η)bn(η)′|xn, η

)
+ E (bn(η)|xn, η) E (bn(η)|xn, η)

′ , (4.7)

where

Bn(η, η) =
∂2 logPr (xn, θn; η)

∂η∂η′
.

Glas (1998, 1999) and Glas and Suarez-Falcon (2003) show that in the case of the
two- and three-parameter logistic model and the nominal response model, the second
derivatives can be approximated by

H (η, η) ≈
∑

n

E (bn(η)|xn, η) E (bn(η)|xn, η)
′ . (4.8)

Below, the precision of this approximation will be evaluated empirically.
The exact expressions for the information matrix derived using (4.7) and (4.8) are

given in Appendix.
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4.3.1. Application to the IRT model for Continuous Responses

The logarithm of the marginal likelihood function for responses following the model
given by (4.1) is

logL (η |x) =
∑

n

log
∫
· · ·

∫ ∏

k

p (xnk |θn, αk, βk ) g (θn; Σθ) dθn. (4.9)

whereη is the ensemble of item and population parameters,η = (α′, β′, vec(Σθ))′,
and vec(Σθ) is defined as a vector of the diagonal and lower-diagonal elements of
Σθ. Further,g (θn; Σθ) is the density ofθn which assumed to be a multivariate normal
distribution with mean vectorµθ = 0 and variance-covarianceΣθ. The maximum of
(4.9) as a function ofη is found as the solution of the equations∂ logL (η |x) /∂η = 0.
These equations are easily found using Fisher’s identity, which is given by (4.4).
For instance, sinceθn has a multivariate normal distribution, equating the first order
derivatives ofg (θn; Σθ) with respect tovec(Σθ) to zero gives

Σθ =
1
N

∑

n

θnθ
′
n.

Application of (4.4) and (4.5) gives the estimation equation

Σθ =
1
N

∑

n

E
(
θnθ

′
n |xn, η

)
(4.10)

where

E
(
θnθ

′
n |xn, η

)
=

∫
...

∫
θnθ

′
n f [θn |xn,Σθ ] dθn,

where the posterior density has a form

f [θn |xn,Σθ ] =

∏
k

p (xnk |θn, αk, βk ) g (θn; Σθ)
∫
· · ·

∫ ∏
k

p (xnk |θn, αk, βk ) g (θn; Σθ) dθn
. (4.11)

The likelihood equations forβk (k = 1, ...,K) as found in an analogous way. The
observationsxnk have a normal distribution with expectationτnk and this expectation
is linear inβk. Equating the first order derivatives ofp (xnk |θn, αk, βk ) to zero gives

∑

n

xnk =
∑

n

τnk,
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and application of (4.4) and (4.5) gives the estimation equation
∑

n

xnk =
∑

n

E (τnk |xn, η ) , (4.12)

for k = 1, ...,K. Similarly, the likelihood equations forαkh (k = 1, ...,K, h = 1, ...,H)
are obtained as ∑

n

xnkE (θnh |xn, η ) =
∑

n

E (τnkθnh |xn, η ) . (4.13)

All these expressions can be solved simultaneously. In practice this is done by the
Newton-Raphson algorithm, the EM (expectation-maximization) algorithm (Demp-
ster, Laird & Rubin, 1977), or a combination of the two, where the EM algorithm is
used as a first approximation and the Newton-Raphson algorithm is used when the
estimates are sufficiently close to the desired maximum (Bock and Aitkin, 1981).

4.3.2. Identification of the Model

To identify the model the restrictionµθ = 0 was imposed. Analogous to multidimen-
sional IRT models for discrete responses, the model can be identified further in two
ways (see, for instance, Béguin & Glas, 2001). The first approach requires setting
the covariance matrix to the identity matrix and introducing the constrainsα jq = 0
j = 1...q− 1 andq = j + 1...Q. The latent ability dimensions are independent of each
other. The first item loads on the first dimension only. The second item loads on the
first two dimensions only, and so on until itemQ loads on the firstQ− 1 dimensions.
All other items load on all dimensions.

The second approach to identify the model is setting the mean equal to the zero
and considering the covariance matrix as a parameter of proficiency distribution that
must be estimated. Further, the model is identified by imposing the restrictions,α jq =

1, if j = q, andα jq = 0, if j , q, for j = 1, ...,Q andq = 1, ...,Q. So, here the first
item defined the first dimension, the second item defines the second dimension, and
the third item defines the third dimension. The covariance matrixΣθ describes the
relation between the defined latent dimensions.

The transformation between the two parameterizations can be done as follows.
Let Ao andA be the matrices of discrimination parameters for the first and the second
approaches, respectively. According to Béguin and Glas (2001),θ can be transformed
to θo by θo = L−1θ, whereL is the Cholesky decomposition ofΣθ. SinceL is lower
triangular andAθ = AL θo = Aoθo, the restrictionsα jq = 1, if j = q, andα jq = 0, if
j , q, for j = 1, ...,Q andq = 1, ...,Q, are transformed intoαo

jq = 1 for j = 1, ...,Q−1
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andq = j + 1, ...,Q. Let us defining the lower triangular matrixF as the firstQ rows
of Ao and usingθ = Fθo, we obtainedΣθ = FF

′
andA = AoF−1, which in turn

produces restrictionsα jq = 1, if j = q, andα jq = 0, if j , q, for j = 1, ...,Q and
q = 1, ...,Q.

4.3.3. Computation

For solving the estimation equations the EM can be used. This general iterative
algorithm for ML estimation in incomplete data problems handles missing data,
first, by replacing missing values by a distribution of missing values, second, by
estimating new parameters given this distribution, and, third, by re-estimating the
distribution of the missing values assuming the new parameter estimates are correct.
This process is iterated until convergence is achieved. The multiple integrals that
appear above can be evaluated using adaptive Gauss-Hermite quadrature (Schilling
& Bock, 2005). A critical point related to using Gauss-Hermite quadrature is the
dimensionality of the latent space, that is, the number of latent variables that can be
analyzed simultaneously. Wood et al. (2002) indicates that the maximum number of
factors is 10 with adaptive quadrature, 5 with non-adaptive quadrature and 15 with
Monte Carlo integration.

4.4. Testing the Model

4.4.1. Preliminaries

The Lagrange Multiplier (LM) test by Aitchison and Silvey (1958) is grounded on
the following rationale. Consider some general parameterized model, and a special
case of the general model, the so-called restricted model. The restricted model is
derived from the general model by imposing constraints on the parameter space. In
many instances, this is accomplished by fixing one or more parameters of the general
model to constants. The LM test is based on the evaluation of the first-order partial
derivatives of the log-likelihood function of the general model, evaluated using the
maximum likelihood estimates of the restricted model. The unrestricted elements of
the vector of first-order derivatives are equal to zero, because their values originate
from solving the likelihood equations. The magnitudes of the elements of the vector
of first-order partial derivatives corresponding to restricted parameters determine the
value of the statistic: the closer they are to zero, the better the model fits.
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More formally, let us consider a null-hypothesis about a model with parameters
η0. This model is derived from the general model with parametersη by fixing
one or more parameters to known constants. We can make a partition ofη0 as
η0 = (η′01, η

′
02)
′, and postulate constants described by vectorη02 that is,η02 = c.

In the applications presented below, the restricted model is the IRT model, soη01 =

(α′, β′, vec(Σθ))′, and the constants will be zero, that is,c = 0. The partial derivatives
of the log-likelihood function of first and second order areh(η) = ∂ logL(η)/∂η and
H(η, η) = −∂2 logL(η)/∂η∂η′ accordingly. Then, the LM statistic is given by

LM = h(η0)′H(η0, η0)−1h(η0). (4.14)

For the case of a partitionedη, at the point of the LM estimatesη01, the free pa-
rameters have partial derivatives equal to zero,h(η01) = 0. This simplifies (4.14)
to

LM(c) = h (c)
′
W−1h (c) , (4.15)

where
W = H22 (c, c) − H21

(
c, η01

)
H11 (η01, η01)

−1 H12 (η01c) , (4.16)

and the partitioning ofW is according to the partitionη0 = (η′01, c
′)′. The LM statistic

has an asymptoticχ2-distribution with degrees of freedom equal to the number of
parameters inη2 (Aitchison & Silvey, 1958). The LM test is equivalent with the
efficient score test (Rao, 1947) and the modification index that is commonly used
in structural equation modelling (Sörbom, 1989). Sörbom (1989) shows that the
value of the LM statistic is proportional to the expected increase of the conditional
likelihood should the additional parameters be estimated. In the next section, we will
introduce four LM statistics targeted at differential item functioning, the shape of the
item response curve, local independence and the factor structure.

4.4.2. Differential Item Functioning

Differential item functioning (DIF) is a difference in item response behavior between
equally proficient members of two or more groups. As an example, consider the
difference in response behavior between boys and girls. It could be that performance
of boys on science and mathematical items is better than performance for girls. On
the other hand, the performance of girls on language items could be better than the
performance of boys. By itself, however, this does not indicate differential item
functioning. Differential item functioning arises when, for a certain item, the level
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of performance of equally proficient boys and girls is different, probably because the
item refers to irrelevant knowledge that is more ubiquitous in one population than in
the other.

There are several techniques for detection of DIF and most of them are based on
the evaluation of differences in response probabilities between groups conditional on
a measure of proficiency. In the framework of the LM test, this is accomplished as
follows. First we define a background variable to distinguish between the groups.
Only two groups are considered here, say the reference and the focal group. The
generalization to more groups is straight forward. DefineYn as

Yn =


1 if n belongs to the focal group

0 if n belongs to the reference group.
(4.17)

Let η01 be a vector of the item parametersα, β and the parameters of the population
distribution of the abilities of the studentsvec(Σθ). Soη01 = (α, β,vec(Σθ)) . In the
alternative model, the expectation of the item response,τnk, is a linear function of
item parameters as in (4.2) and an additional parameterδk, that is,

τnk = α′kθn − βk + δkYn. (4.18)

If δ = 0, the null model holds. In the alternative model,δk is a free parameter. Note
that δk can be interpreted as a shift in the item parameterβk in the focal group. To
test whether this parameter significantly differs from zero, the LM statistic defined
by (4.14) and (4.15) can be used withη02 = c = δk.

The expression forh(τnk) can be found in the same way as (4.12) was derived.
It easily follows that the first derivatives of the log-likelihood function,h(δk) =

∂ logL(η)/∂δk, are given by

h(δk) =
∑

n

xnhYn −
∑

n

YnE (τnk |xn ) . (4.19)

Substitution of this expression into (4.16) provides the expression for the LM statistic

LM =

(∑
n

xnkYn −∑
n

YnE (τnk |xn )

)2

W
, (4.20)

whereW is defined by (4.16). Note thatW is now is a scalar.W can be interpreted
as the variance ofh(η02) give the parameter estimates. Expressions forW can be
derived using either (4.7) or (4.8). The LM statistic has an asymptoticχ2-distribution
with one degree of freedom.
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4.4.3. Shape of the Item Response Function

The shape of the response function, that is, the appropriateness ofp(xnk|θn, αk, βk) in
describing the response probabilities, could, in principle, be evaluated by partitioning
the space ofθ into a number of subsets and comparing the observed and expected
responses averaged over the respondents in the subsets. However, in the framework
of IRT models for discrete responses, Orlando and Thissen (2000) remarked that
the grouping of respondents based on an estimate ofθ rather than on some directly
observable statistic violates the assumption of the traditionalχ2-goodness-of-fit-test,
and, as a result, the distribution of such statistics remains unclear. As an alternative,
they proposed statistics where the grouping of respondents is based on directly ob-
servable number-correct scores rather than on estimates ofθ. An analogous approach
will also be pursued here.

For a test targeted at itemk, we partition the sample of respondents using a
number of boundaries for the total score obtained on all the other items. So let
the item of interest be labelledk and the other items are labelledj = 1,2, ..., k −
1, k + 1, ...,K. Let x(k) be the response pattern without itemk, and letr

(
x(k)

)
be the

number-correct score on this partial response pattern,

r
(
x(k)

)
=

∑

j,k

x j . (4.21)

r
(
x(k)

)
is often called a rest-score. The range of possible scoresr

(
x(k)

)
is partitioned

into Sk intervals. Furthermore, define

w
(
s, x(k)

)
=


1 if rs−1 ≤ r

(
x(k)

n

)
< rs,

0 otherwise,
(4.22)

for s = 1, ...,Sk with r0 = −∞ andrSk = ∞. Sow
(
s, x(k)

)
is an indicator function

assuming a value equal to1 if the number correct score of response patternx(k) is in
score ranges. The expectation of the item response under the alternative model has
the form

τnk = α′kθn − βk +

S−1∑

s=1

w
(
s, x(k)

)
δs. (4.23)

Note thatw
(
s, x(k)

)
is equal to one for only one of theS score segments, so the

summation defined in (4.23) only selects one of the parametersδs. The parameterδs

gauges the shift in item parameterβk for score groups. Finally, note that there is no
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parameterδS; that is, the highest score level is used as a base line. IfδS would also
be present, the model defined by (4.23) would no longer be identified.

The application of the LM statistic to test the model is analogous to the applica-
tion to DIF. If δ = (δ1, ..., δS−1) = 0, the null model holds. In the alternative model,
δ is a free parameter that can be interpreted as a shift in the item parameterβk. To
test whether this parameter significantly differs from zero, the LM statistic defined
by (4.14) and (4.15) can be used withη02 = c = δ. The statistic has an asymptotic
χ2-distribution withS − 1 degrees of freedom.

The expression forh(δ) can be found in the same way as (4.12) was derived. The
expression for first derivative with respect toδs is

h(δs) =
∑

n

w
(
s, x(k)

)
xnk −

∑

n

w
(
s, x(k)

)
E (τnk |x) . (4.24)

Note that the first order derivative is the difference between the observed scores and
expected scores of persons in subgroups. The simplest form of the test emerges if
only two score levels are considered, that is, ifSk = 2. In that case, one could set
the cut-off scorer1 somewhere in the middle of the score range, say,r1 = 0, and test
whether students with a high rest-scorer

(
x(k)

)
perform better or worse as expected

on the target itemk. The distribution of this version of the test statistic has one degree
of freedom.

4.4.4. Local Independence

The assumption of local stochastic independence requires the association between
the items to vanish given the parameters. If, for instance, we want to test whether an
item response depends on the previous item, we define the indicator function

w
(
s, x(k−1)

)
=


1 if rs−1 ≤ x(k−1) < rs,

0 otherwise,
(4.25)

for s = 1, ...,Sk with r0 = −∞ andrSk = ∞. As before, the simplest form of the test
emerges if only two score levels are considered, and test whether students with a high
score on the previous item perform better or worse than expected on the target item.

The expression for expectation of the item response,τnk, has a form

τnk = α′kθn − βk +

S−1∑

s=1

w
(
s, x(k−1)

)
δs. (4.26)
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and last contribution describes the effect of itemk− 1 on itemk.
Parameterδk reflects the alternative model and we can get the expression for first

derivative

h(η02) =
∑

n

xnkw
(
s, x(k−1)

) −
∑

n

w
(
s, x(k−1)

)
E (τnk |xn ) . (4.27)

Note that, analogous to the test for the shape of the response functions, in this case
the first order derivative is equal to the difference between the observed scores and
expected scores of persons in subgroups again. Also in this case, the simplest form
of the test emerges if only two score levels are considered, that is, ifSk = 2. In that
case, one could set the cut-off scorer1 somewhere in the middle of the score range of
itemk− 1 and test whether students with a high score on itemk− 1 perform better or
worse as expected on the target-itemk.

4.4.5. Tests for the Factor Structure

Above it was argued that the model can be identified by setting a mean and a covari-
ance matrix equal to zero and the identity matrix, respectively, and introducing the
constraintsα jq = 0, for j = 1, ...,Q − 1 andq = j + 1, ...,Q. In this approach, the
model is identified by assuming that the responses on the first item are uniquely
determined by the first ability dimension, the responses on the second items are
uniquely determined by a mixture of the first and the second ability dimension, and
so forth. In general, these identification restrictions will not support a very reliable
interpretation of the ability dimensions. Therefore, in an exploratory factor analysis,
the factor solution is usually visually or analytically rotated. Often a rotation scheme
is devised to approximate Thurstone’s simple-structure criterion (Thurstone, 1947),
where the factor loadings are split into two groups, the elements of the one tending
to zero and the elements of the other tending toward unity. In the framework of
multidimensional IRT models, Béguin and Glas (2001) suggest an approach that has
much in common with Thurstone’s approach. The idea is to identify the dimensions
with subscales of items loading on one dimension only, either by identifying these
S 6 Q subscales a priori, or by identifying them using an iterative search based on
fitting S unidimensional IRT models. The procedure can be characterized as a top-
down procedure, that starts with the set of all items and discards the non-fitting items
using fit-statistics for unidimensional IRT models. The test statistics discussed above
can be used for the evaluation of item fit. After identification ofS sets of scaled items,
there will usually be a set of remaining items that load on all ability dimensions. Next,
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restrictions will be imposed on the matrix of discrimination parametersA to reflect
the structure of the subscales found, that is, if itemj belongs to subscaleq, α jq = 1,
andα jq′ = 0, for q′ = 1, ...,Q, q′ , q. Finally, if more dimensions than subscales are
specified, the remaining dimensionsq = S+1, , ...,Q are identified usingα j′q = 1,and
α j′q′ = 0 (q′ = 1, ...,Q, q′ , q), for some itemj′ not belonging to a subscale.

To test this factor structure, we adopt the null-hypothesisH0: α jl = 0. The model
is estimated under the null-hypothesis, that is, the likelihood equation (4.13) is not
solved for the parameterα jl , but this parameter is restricted to zero. Given the MML
estimates of the free parameters, analogous to (4.13) the first order derivatives with
respect toα jl are given by

h
(
α jl

)
=

∑

n

E
((

xn j − τn j

)
θnl |xn

)
,

and the Lagrange Multiplier statistic is computed as

LM
(
α jl

)
=

h
(
α jl

)2

H22

(
α jl , α jl

)
− H21

(
α jl , η

)
H (η, η)−1 H12

(
α jl , η

) ,

whereh andH are the partial derivatives of the log-likelihood function of the first
and second order. The statistic has an asymptoticχ2-distribution with one degree of
freedom

4.5. An Empirical Example

The methods presented above are illustrated with an analysis of a data set of Dutch
Central examinations. The data are a subset of the data of pre-university students that
took their final examination in the school year 1994/1995. The students choose an ex-
amination package that consisted of different examination topics. For our illustration
we choose one of the packages, which consisted of seven topics: Dutch, English and
German Language, History, Mathematics, General Economy and Business Economy.
The sample consisted of 445 students. The examination scores were on a scale of 0
to 10, with two significant digits after the decimal point.

The objective was to fit a model with a low dimensionality and a simple factor
structure. First a unidimensional model was fitted and for every topic the test statistic
for the shape of the response function was computed using two subgroups. This lead
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Table 4.1: Parameter estimates for examination topics (Starred entries are
fixed)

Topic αk1 αk2 αk3 βk

Dutch 0.17 -0.04 0.37 -6.21
German 1.00* 0.00* 0.00* -6.41
English 0.95 0.00* 0.00* -6.44
History 0.38 0.10 0.52 -6.42
Mathematics 0.00* 1.00* 0.00* -5.82
Gen. Econ. 0.00* 0.00* 1.00* -6.16
Bus. Econ. 0.00* 0.28 0.57 -6.19
Covariance Matrix

0.786
0.325 0.571
0.430 0.558 0.605

Correlation Matrix
1.000
0.485 1.000
0.623 0.949 1.000

to the conclusion that the unidimensional model did not fit. Then a two-dimensional
model was hypothesized, where one dimension should represent a language abil-
ity and the other a mathematics ability. However, for the outcome of the model
tests showed that also this model was not tenable. The estimates of the final three-
dimensional model are shown in Table 4.1.

The first two dimensions are identified by fixing the rows of the topics German
and Mathematics. In Table 4.1, the fixed elements are marked with an asterisk. Note
that German only loads on the first dimension, while Mathematics only loads on the
second dimension. Therefore, these dimensions can be labeled as language ability
and mathematics ability. The third dimension was identified as a dimension related
to Economy, but also Dutch Language and History had significant loadings on this
dimension. The estimatedβ-parameters are shown in the last column. Since the mean
of the ability distribution is scaled to zero, the opposite of theβ -parameters reflect
the average scores on the topics. Note that the average score on Mathematics was the
lowest and the average score on English Language was the highest. The estimated
covariance matrix and the associated correlation matrix are given at the bottom of the
table. Note that the Economics dimension correlated highly with the Mathematics
dimension. The other two correlations are only moderate.
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Next, model fit was evaluated using the four tests outlined above. Differential
item functioning (or rather, differential test functioning, in the present case) was
evaluated for the background variable Gender. The outcomes of the tests for dif-
ferential item functioning are given in Table 4.2. The topics are in the same order as
in Table 4.1.

Table 4.2: Lagrange tests for differential item functioning
Boys Girls

Topic LM Prob Obs Expct Obs Expct
Dutch 6.46 .011 6.17 6.25 6.27 6.11
German 0.77 .380 6.55 6.53 6.14 6.19
English 8.86 .003 6.63 6.54 6.05 6.22
History 3.13 .077 6.57 6.51 6.12 6.22
Mathematics 0.01 .910 5.90 5.89 5.67 5.68
Gen. Econ. 4.08 .043 6.31 6.25 5.87 5.99
Bus. Econ. 0.19 .666 6.25 6.26 6.08 6.05

The second and third columns give the values of the LM statistics and the signif-
icance probabilities. The statistic has one degree of freedom. The tests are based
on the differences between observed and expected average topic scores for boys
and girls. The values are given in the last four columns. They can be used to
assess the seriousness of a model violation. This is important because the power
of the test increases with the sample size, and with a large sample size, a significant
result is easily obtained. In the present example, the test for English has the lowest
significance probability. This is because the Girls score on average 0.17 score point
lower than expected and the Boys score on the average 0.09 score points higher than
expected.

Table 4.3 and Table 4.4 give analogous results for the test for the shape and the
test for local independence, respectively. For the first test, the sample was divided
into two groups of students: a group with 50% of the students that obtained the
lowest scores, and a group of 50% of the students that obtained the highest scores.
Business Economy,was highly significant: The lower scoring group obtained a lower
average score than expected and the higher scoring group obtained a higher average
than expected.

For the evaluation of the assumption of local independence, for every topick in
the list the sample was again divided into two groups: students that scores low on
Topic k − 1. In principle, all combinations of subjects could have been tested for
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Table 4.3: Lagrange tests for the response function
Low High

Topic LM Prob Obs Expct Obs Expct
Dutch 1.51 .219 5.98 5.94 6.43 6.47
German 0.98 .322 5.88 5.92 6.94 6.90
English 5.60 .018 5.89 5.97 6.97 6.90
History 1.46 .227 5.87 5.90 6.96 6.92
Mathematics 0.02 .893 5.41 5.40 6.24 6.24
Gen. Econ. 1.95 .163 5.61 5.67 6.71 6.65
Bus. Econ. 14.49 .000 5.67 5.79 6.71 6.59

violation of local independence; the example serves as an illustration of the method.
With respect to local independence, it can be seen that the association between Ger-
man and English Language and between General and Business Economics was not
properly modeled. In both cases, the association between the topics was higher than
expected. This suggests that a unique dimension for the two forms of economy might
result in a better fit.

Table 4.4: Lagrange tests for local independence
Low High

Topic 1 Topic 2 LM Prob Obs Expct Obs Expct
German Dutch 2.98 .084 6.09 6.16 6.74 6.67
English German 27.41 .000 5.80 5.96 7.07 6.91
History English 0.04 .838 6.04 6.04 6.79 6.78
Mathematics History 1.57 .210 5.54 5.49 6.10 6.15
Gen. Econ. Mathematics 0.08 .774 5.83 5.82 6.49 6.51
Bus. Econ. Gen. Econ. 22.71 .000 5.68 5.84 6.70 6.53

Finally, Table 4.5 gives the results for the test targeted at the factor structure, that
is, targeted at the factor loadingsαkh fixed to zero. These are the zero factor loadings
marked with an asterisk in Table 4.1. Note that none of the tests was significant at
the 5% level. So in this respect the model fitted very well.
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Table 4.5: Lagrange test for the factor structure
Topick Dim h LM Prob
German 2 0.09 .755
German 3 0.28 .591
English 2 0.21 .644
English 3 0.86 .353
Mathematics 1 0.15 .690
Mathematics 3 0.61 .433
Gen. Econ. 1 0.00 .966
Gen. Econ. 2 0.70 .401
Bus. Econ. 1 3.28 .070

4.6. A Simulation Study of Type I Error Rate and Power

The Type I error rate or significance level of a test is the probability of rejecting the
null hypothesis of perfect model fit when the null-model is true. In the present study,
a significance level of 5% was used. On the other hand, power is the probability of
rejecting the null hypothesis when a model violation occurs. One could call this the
detection-rate or hit-rate. For all tests described above, both the Type I error rate
and the power were studied using simulation studies. In these studies, data were
generated according to the model under the null-hypothesis or the model under the
alternative hypothesis, that is, under the null-model with an added model violation.
In all studies, the sample size was varied as 500, 1000 and 4000.

The simulation studies were carried out in two setups. The first setup pertained
to the tests of DIF, the shape of the response function, and local independence, the
second setup pertained to the test for the factor structure. We will first outline the
first setup and summarize the results. Then the second setup will be treated. In
the simulations in the first setup, a unidimensional version of the model was used
where the student parametersθn were drawn from a standard normal distribution. The
number of items was varied as 10, 20 and 40, and the item location parametersβwere
equally spaced between -1.0 and 1.0. Finally, the item discrimination parametersα

were all equal to 1.0.

4.6.1. Type I Error Rate

The study with respect to the Type I error rate was conducted using both the exact
expressions for the second order derivatives given in (4.7) and in the Appendix, and
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the approximation given by (4.8). The number of replications in the simulation study
was 100 for each combination of the sample size and test length. For the test on DIF,
the numbers of simulees in each group were equal. For the tests for the item response
function and local independence, two score groups were formed (soSk = 2 for all
k) and the cut-off score was always equal to zero. As a result, the sizes of the two
groups were approximately equal. The Type I error rate was computed as the number
of tests significant at the 5% level aggregated over all items. The results are presented
in Table 4.6.

Table 4.6: Type I error rate of three test statistics computed using exact and
approximated matrices of second order derivatives

N K DIF Test IRF Test LID Test
Exact Approx. Exact Approx. Exact Approx.

500 10 .05 .06 .04 .04 .03 .03
20 .05 .04 .04 .04 .04 .06
40 .05 .06 .05 .08 .03 .07

1000 10 .05 .04 .07 .04 .04 .04
20 .06 .05 .05 .04 .05 .05
40 .05 .06 .05 .06 .05 .07

4000 10 .06 .05 .05 .04 .04 .05
20 .05 .05 .05 .05 .04 .05
40 .05 .06 .05 .06 .05 .06

It can be seen that the control of Type I error rate was generally good. There
were no main effects of sample size and test length. Further, there were no striking
difference between the two versions of the statistic.

4.6.2. Differential Item Functioning

In the simulation study on the power of the tests to detect differential item function-
ing, three values were chosen for the effect size: δ = 0.1, δ = 0.2 and δ = 0.5.
Following the terminology of Cohen (1988), these effect sizes can be labelled as
minimal, small and large. The item and person parameters were the same as in
the study of the Type I error rate. Within every one of the 100 replications, the
model violation was imposed on one randomly chosen item. The results are given in
Table 4.7.

The columns labelled “Hits” give the proportion of replications for which the
test on the differentially functioning item was significant at the 5% level. So these
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columns give an estimate of the power of the test. The columns labelled “False
Alarms” give the proportion of significant results for the items conforming to the
model, aggregated over replications and all model conform items. These columns
give an estimate of the Type I error rate.

Table 4.7: Detection of differential item functioning
DIF Test IRF Test LID Test

N K δ Hits False Hits False Hits False
Alarms Alarms Alarms

500 10 .1 .69 .06 .05 .04 .05 .03
.2 1.00 .07 .05 .04 .05 .03
.5 1.00 .15 .07 .04 .05 .04

20 .1 .68 .06 .05 .05 .04 .06
.2 1.00 .07 .08 .05 .05 .06
.5 1.00 .09 .05 .05 .07 .06

40 .1 .74 .07 .10 .06 .08 .07
.2 1.00 .07 .07 .07 .08 .07
.5 1.00 .08 .06 .08 .09 .08

1000 10 .1 .90 .06 .05 .04 .05 .04
.2 1.00 .10 .05 .04 .03 .04
.5 1.00 .22 .12 .04 .05 .04

20 .1 .94 .06 .09 .04 .06 .06
.2 1.00 .07 .07 .05 .07 .06
.5 1.00 .10 .07 .05 .05 .07

40 .1 .96 .06 .05 .07 .06 .07
.2 1.00 .06 .06 .08 .09 .07
.5 1.00 .07 .07 .08 .06 .08

4000 10 .1 1.00 .08 .07 .05 .07 .06
.2 1.00 .23 .12 .05 .05 .07
.5 1.00 .45 .31 .05 .05 .08

20 .1 1.00 .05 .07 .05 .12 .11
.2 1.00 .10 .05 .05 .11 .11
.5 1.00 .23 .16 .06 .08 .12

40 .1 1.00 .06 .07 .06 .13 .14
.2 1.00 .06 .06 .06 .13 .14
.5 1.00 .10 .07 .07 .08 .13

Note that the test on DIF displayed the largest proportion of hits; in most in-
stances, this proportion was equal to 1.00. Note further that the proportion of hits for
the test targeted to DIF has main effects of test length and sample size. Finally, the
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control of Type I error rate, that is, the proportion of false alarms, remained generally
close to the nominal significance level. The main exceptions occurred for the large
effect size in combination with a short test. The explanation is that in these cases
the imposed model violation was such that every combination led to a global model
violation affecting all items. The two other statistics had both the proportion of hits
and false alarms at the nominal significance level. Form a diagnostic perspective, it is
desirable that tests have power against specific model violations, so this is a positive
result.

4.6.3. Item Response Functions

The results of the simulation studies with respect to the power of the three tests to
detect violation of the item response function are shown in Table 4.8. The power is
reported in the columns labelled “Hits”. It can be seen that in the present case the
test targeted at DIF had no power. The test on the fit of the items response function
had the highest power. But the test targeted at local independence had also power to
detect violation, although its power was of course less than the power of the specific
test. In both cases, there were clear main effects of the effect sizeδ, sample size and
test length. Further, it can be seen that the Type I error rate was well under control.

Local Independence
The results for the detection of violations of local independence are shown in Ta-
ble 4.9. It can be seen that the test targeted at violation of local independence now
attained the highest power. Again, there were clear main effects of the effect size
δ, the sample size and the test length. The test for the shape of the IRFs also had
considerable power but the power of the test on DIF hardly exceeded the nominal
significance level. For all three tests, the Type I errors were virtually similar to their
nominal levels.

4.6.4. Type I Error Rate and Power of the Test for the Factor Structure

The test for the factor structure can only be meaningfully applied in a multidimen-
sional version of the model, and, therefore, the setup chosen here was somewhat
different. The simulations were run in two versions, say Study 1 and Study 2. In
Study 1, the generating values of the item parameters and the covariance matrix were
chosen equal to the parameter estimates obtained in the empirical example presented
above. So the parameters used to generate the data are given in Table 4.1. In Study 2,
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Table 4.8: Detection of violation of the item response function
DIF Test IRF Test LID Test

N K δ Hits False Hits False Hits False
Alarms Alarms Alarms

500 10 .1 .05 .06 .24 .06 .09 .03
.2 .06 .06 .71 .07 .12 .04
.5 .08 .06 1.00 .08 .23 .04

20 .1 .05 .06 .27 .05 .14 .06
.2 .06 .06 .86 .05 .18 .05
.5 .05 .06 1.00 .06 .29 .05

40 .1 .09 .07 .49 .08 .19 .08
.2 .08 .07 .96 .07 .20 .08
.5 .09 .07 1.00 .07 .29 .09

1000 10 .1 .06 .10 .26 .05 .14 .03
.2 .05 .07 .94 .05 .24 .04
.5 .07 .05 1.00 .06 .42 .05

20 .1 .05 .06 .37 .05 .20 .06
.2 .05 .05 .97 .06 .23 .06
.5 .05 .06 1.00 .04 .37 .06

40 .1 .06 .06 .60 .07 .18 .07
.2 .05 .06 1.00 .07 .29 .08
.5 .07 .06 1.00 .06 .43 .07

4000 10 .1 .05 .05 .69 .05 .21 .07
.2 .05 .05 1.00 .09 .53 .04
.5 .05 .05 1.00 .05 .90 .04

20 .1 .07 .05 .91 .06 .34 .11
.2 .08 .05 1.00 .06 .59 .21
.5 .05 .05 1.00 .07 .88 .10

40 .1 .07 .05 .97 .06 .44 .12
.2 .03 .05 1.00 .05 .60 .12
.5 .05 .05 1.00 .06 .86 .12

the covariance matrix remained the same, but there were nine items. It was assumed
that the first three items only loaded on the first dimension, the second three items
only loaded on the second dimension and the last three items only loaded on the last
dimension. All factor loadings where either equal to one or zero. Allβ-parameters
were equal to -6.0. The sample size was varied as 500, 1000 and 4000. In the studies
to assess the power, the second factor loading of the second item,α22, which was
equal to zero in the null-model, was varied asα22 = 0.2 andα22 = 0.5. Each leg
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Table 4.9: Detection of violation of local independence
DIF Test IRF Test LID Test

N K δ Hits False Hits False Hits False
Alarms Alarms Alarms

500 10 .1 .06 .05 .09 .04 .11 .04
.2 .07 .06 .13 .05 .41 .04
.5 .05 .06 .23 .05 .95 .04

20 .1 .07 .06 .11 .05 .17 .05
.2 .05 .06 .12 .06 .40 .06
.5 .05 .06 .14 .05 .93 .06

40 .1 .07 .07 .14 .08 .17 .07
.2 .06 .07 .17 .08 .38 .07
.5 .09 .07 .18 .08 .90 .07

1000 10 .1 .05 .05 .11 .05 .12 .04
.2 .06 .05 .12 .04 .69 .04
.5 .05 .05 .40 .04 1.00 .04

20 .1 .05 .06 .14 .05 .13 .06
.2 .06 .06 .12 .05 .64 .06
.5 .05 .06 .26 .05 .98 .06

40 .1 .05 .06 .10 .07 .11 .08
.2 .07 .06 .12 .07 .60 .07
.5 .06 .06 .14 .07 1.00 .07

4000 10 .1 .05 .05 .19 .05 .38 .06
.2 .05 .06 .49 .05 1.00 .06
.5 .06 .05 .91 .07 1.00 .05

20 .1 .05 .05 .12 .05 .18 .12
.2 .05 .05 .29 .05 .99 .12
.5 .07 .05 .57 .05 1.00 .11

40 .1 .05 .05 .12 .06 .20 .13
.2 .06 .05 .19 .06 .95 .13
.5 .06 .05 .27 .06 1.00 .13

of the study had 100 replications. The results are shown in Table 4.10. The rows
with an effect sizeα22 = 0.0 pertain to the Type I error rate. It can be seen that
the Type I error rate was close to its nominal value of 5%. For the power studies,
where the model was violated by choosingα22 unequal to zero, the situation is more
complex than in the previously reported power studies. This has to do with the fact
that in a multidimensional model, the model fit can be improved in more than one
way. For instance, in Table 4.1, it can be seen that the factor pattern of Topic 2 and
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Topic 3 are similar. So ifα22 is erroneously specified as zero, while it is in fact
0.5, the specification error can not only be compensated by freeingα22, but also by
freeingα32 which will then move to a negative value. This is in fact what happened
in both Study 1 and Study 2. Further, in Study 2, the first three rows of the matrix
of factor loadings were the same, so here also the test forα12 should be sensitive
to the model violation imposed onα22. Therefore, the outcomes in the columns of
Table 4.10 labeled Power are the proportions of significant outcomes of the LM tests
for analogous elements in identical rows in the factor matrix. So in Study 1, the LM
tests forα22, andα32, and in Study 2 the LM tests forα12, α22, andα32. Note that
the power has main effects of the effect size and the sample size, as was expected.
Further, the Type 1 error rate was well under control. So the conclusion here is that
the LM tests give a clear hint regarding the possible directions to obtain model fit,
but it remains the choice of the content matter expert which direction to chose.

Table 4.10:Type I error rate and power of the test for the factor structure

Effect Study 1 Study 2
N Size Power Type I Error Power Type I Error

500 0.0 .04 .04
0.2 .37 .06 .31 .04
0.5 .63 .04 .55 .04

1000 0.0 .04 .04
0.2 .40 .03 .45 .04
0.5 .64 .02 .58 .04

4000 0.0 .05 .05
0.2 .42 .05 .50 .05
0.5 .70 .05 .60 .06

4.7. Conclusion

An MML framework for estimation and testing of a model for continuous responses
was presented and simulation studies were conducted to assess the Type I error rate
and power. The simulation studies showed that these tests had good properties.
Further, the tests are based on residuals, that is, differences between observed and
expected mean scores, that support an appraisal of the seriousness of the model
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violation. Finally, the tests give an indication of the source of the lack of model
fit, and provide a direction for model modification.

A final remark concerns the likelihood-based framework that was chosen for this
study. An advantage of MML framework adopted here is that the item parameters
and the covariance matrix can be estimated simultaneously. Therefore, the standard
errors of the estimates and the distribution of the test statistics take all uncertainty
into account. A disadvantage is the limit on the dimensionality of the model imposed
by the computational restrictions. However, considerable progress has been made in
broadening these limits (Schilling & Bock, 2005).

A well known alternative approach to estimating the model considered here is a
Bayesian procedure using a Markov Chain Monte Carlo (MCMC) algorithm (see, for
instance, Gelman et al., 1995). Examples are the procedures outlined by Shi and Lee
(1998) and Béguin and Glas (2001). However. Bayesian estimation methods based
on the MCMC algorithm are usually combined with data augmentation methods,
and this also limits the size of the problems (in terms of number of persons, items
and dimensions) that can be handled. Further, the procedures for testing model fit
in a Bayesian framework are not yet satisfactory developed. At this moment, two
approaches to testing model fit based on a philosophy comparable to the one used
above are studies. The first approach is to use likelihood-based statistics as posterior
predictive checks (Hoijtink, 2001, Glas & Meijer, 2003). As a general approach
this may have problems because, as was pointed out by Maris (2005), the power
characteristics of posterior predictive checks are far from optimal. An alternative
approach, labeled Bayesian modification indices has been recently proposed by Fox
and Glas (2005) but this approach has not yet been tested broadly for a general class
of models. So for the time being, the proven robustness of MML estimation and
testing methods still justifies their widespread use.



4.A. Information Matrix for the Items 75

Appendix

4.A. Information Matrix for the Items

The information matrix is the sum over studentsn of terms

−E (Bn(η, η)|xn, η) − E
(
bn(η)bn(η)′|xn, η

)
+ E (bn(η)|xn, η) E (bn(η)|xn, η)

′ , (4.28)

where

bn (η) =
∂

∂η
logPr (xn, θn; η) (4.29)

and

Bn(η, η) =
∂2 logPr (xn, θn; η)

∂η∂η′
. (4.30)

The last term in (4.28) can be directly inferred from the estimation equations given
by (4.12) and (4.13).

The kernel of the log-likelihood per student and item is given by

logLnk = −1
2

(xnk − τnk)
2, with τnk =

∑

h

αkhθnh− βk.

For the items, the following derivatives are easily checked:

∂ logLnk

∂αkh
= −θnh(Xnk − τnk)

∂ logLnk

∂βk
= (xnk − τnk)

∂2 logLnk

∂α2
kh

= θ2
nh

∂2 logLnk

∂β2
k

= −1

∂2 logLnk

∂αkh∂αkp
= θnhθnp

∂2 logLnk

∂αkh∂βk
= −θnh

Inserting these identities into (4.28) gives the information matrix for the items.
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Bayesian Methods for IRT Models
for Discrete and Continuous
Responses

ABSTRACT: A comprehensive Bayesian estimation method using a Mar-
kov chain Monte Carlo (MCMC) computational method was developed
that can be used to simultaneously estimate the parameters for models
for discrete and continuous responses for a broad class of models. The
method is illustrated with examples of the analysis of the grades from
Central Examinations in Secondary Education in the Netherlands. A
comparison between the grades from these examinations is complicated
by the interaction between the students’ pattern and level of proficiency
on one hand and their choice of examination subjects on the other hand.
Since this choice may cause a violation of the ignorability principle
underlying most inferences in IRT, the model for the responses was
enhanced with a model for the choice of the examination subjects. To il-
lustrate the estimation procedure, estimates of both a model without and
with this enhancement are presented. Finally, it will be shown how the
proportion of variance in the grades explained by the students’ schools
and the effect of covariates (in this case Gender) can be estimated.
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5.1. Introduction

Most applications of IRT models are to categorical data (Rasch, 1960; Samejima,
1969; Bock, 1972; Lord, 1980; Masters, 1982). However, situations may arise
where the responses to the items are continuous. IRT models for continuous re-
sponses are outlined in Mellenbergh (1994), Moustaki (1996) and Skrondal and
Rabe-Hesketh (2004). The present report focuses on Bayesian estimation methods
for multidimensional IRT models for discrete and continuous responses simulta-
neously. A comprehensive estimation method using a Markov chain Monte Carlo
(MCMC) computational method is developed that can simultaneously estimate the
parameters for models for discrete (dichotomous and polytomous) responses and
continuous responses for a broad class of models. Mostly, the method follows a
proposal by Shi and Lee (1998, also see Béguin, & Glas, 2001), but we present
several new features of the method as well. An analysis of the scaling of students’
scores on a number of examination topics will be given as an example of the proposed
methods.

Another problem studied in this chapter concerns the problem of missing data.
Usually, it is assumed that missing responses (both this missing by design and ran-
domly during the test administration process) do not depend on the latent variable to
be measured. Procedures for analyzing data subject to this kind of missing mecha-
nism were proposed by Lord (1974), who examined the imputation of partially cor-
rect item scores, and Bock (1972), who proposed treating omitted responses as an ad-
ditional response category. However, it has also been shown that this type of missing
responses can be ignored in the analysis (Bock & Aitkin, 1981). This is not the case if
the missing responses result from a non-ignorable missing data mechanism. This type
of data may emanate from low-ability respondents who fail to produce a response, as
a result of discomfort or embarrassment, or simply because they have skipped items.
Another example are missing responses due to time constraints. Bradlow and Thomas
(1998) and Holman and Glas (2005) show that ignoring this kind of missing data
process leads to bias in parameter estimates. Therefore, the model for the responses
is enhanced with a selection model for the missing data indicators. In the present
chapter, the application of such models will be illustrated with an example of the
analysis of examination grades from central examinations in secondary education in
the Netherlands. Since the comparison between the examination grades is expected
to be complicated by the interaction between the students’ pattern of proficiencies on
the one hand and their choice of examination subjects on the other, the IRT model for



5.2. The Model 79

the grades is enhanced with a model for the choice of the examination subjects.

5.2. The Model

5.2.1. A Model for Continuous Responses

Let students be indexedn = 1, ...,N, and let items be indexedk = 1, ...,K. It is
assumed that the observationznk, on studentn and itemk is normally distributed, that
is

P(Znk = znk | θn, ak,bk ) =
1√

2πσ2
k

· exp

−
(znk − ηnk)2

2σ2
k

 . (5.1)

The expectation of the item response is a linear function of the explanatory latent
variables, that is,

ηnk =

Q∑

q=1

akqθnq− bk

= a′kθn − bk, (5.2)

whereak is a vector of the parameters (ak1, ..., akq, ..., akQ) which are usually called
factor loadings andbk is a location parameter. Further,θn =

(
θn1, ..., θnq, ..., θnQ

)
is

the Q-dimensional proficiency parameter of studentn. We assume thatσ2
k = 1, for

all k. That is, we assume that all the observed responses have the same scale.

5.2.2. Models for Discrete Responses

Graded Response Model
Samejima (1969) proposed a model for polytomously scored items, where the prob-
ability of a response in categoryj ( j = 1, ...,m) of itemk, is given by

P(Ynk j = 1;ηnk j) =



1− Φ (ηnk1) if j = 0

Φ
(
ηnk j

)
− Φ

(
ηnk( j+1)

)
if 0 < j < m

Φ (ηnkm) if j = m ,

(5.3)

whereΦ denotes the standard normal cumulative distribution function, andηnk j =

α′kθn−βk j. To ensure that the probabilitiesP(Ynk j = 1;ηnk j) are positive, the restriction
bk( j+1) > bk j, for 0 < j < m is imposed.
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A Model for a Singly Peaked Response Function

For dichotomously scored items, response probabilities that are monotonically in-
creasing inθ may not always be appropriate. Examples are often encountered in
attitude assessment. For instance, the question “Should public use of marijuana
be fined?” may be disaffirmed by respondents with a liberal attitude towards drugs,
but also by respondents with a strict attitude towards drugs, the latter because they
take the view that a fine is far too lenient. Below, an application of singly peaked
response functions in the framework of educational assessment will be presented.
The model that will be considered is closely related to models by Andrich and Luo
(1993, also see Andrich, 1997) and Verhelst and Verstralen (1993). Both models have
a singly-peaked response probability, only the functional form of the probability is
chosen differently. The model by Andrich and Luo (1993) has a hyperbolic cosine
function probability function. The model by Verhelst and Verstralen (1993) is derived
from the partial credit model with three response categories, where the highest and
lowest categories are collapsed. This approach will also be used here, only the graded
response model will be used as the starting point because this leads to a much simpler
functional form. So, we assume that the probability of a positive response is equal to

P(Ynk = 1;ηnk) = Φ (ηnk1) − Φ (ηnk2) (5.4)

with ηnk j = a′kθn − bk j ( j = 1, 2) andbk1 < bk2 to guarantee thatP(Ynk = 1;ηnk) is
positive. Note that

P(Ynk = 0;ηnk) = 1− P(Ynk = 1;ηnk)

= 1− Φ (ηnk1) + Φ (ηnk2) .

The model in (5.4) is related to a graded response model for responses that takes
the values 0, 1 or 2, where the responses0 and2 are collapsed toYnk = 0. This
conceptualization will also play a role in the estimation procedure for the model.

5.2.3. Higher-Level Models for Person Parameters

On a second level, it can be assumed that all first-level person parameters are i.i.d.
samples from a multivariate normal distribution, that is,

θn ∼ N(µP,ΣP). (5.5)
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We may also assume that the students may be nested under some higher-level
units. For instance, students may be nested in classes. The higher-level units will be
indexedp = 1, ...,P. We imposed a two-level regression model on the latent variables
θnpq, that is,

θnpq =

S∑

s=1

βpsqxnps+ εnpq

and

βpsq =

T∑

t=1

γsqtwptsq+ υpsq.

It will be assumed thatxnp1 and wp1sq are equal to one. The error terms have
distributions

εnp ∼ N(0,Σ),

whereΣ is aQ× Q covariance matrix and

υp ∼ N(0,T),

whereT is a S Q× S Q covariance matrix. BothT and Σ are not restricted to be
diagonal. An alternative formulation is that person parametersθnp are predicted with
a linear regression model, whereXnp are observed covariates,βp are the regression
parameters in unitp, andΣP is the covariance-matrix of the residuals. Then the
density ofθnp is given by

θnp ∼ N(Xnpβp,ΣP),

and the regression parameters are themselves also random variables with the regres-
sion model

βp ∼ N(Wpγ,T),

whereWp are observed covariates,γ, are regression parameters andT is the covariance-
matrix of the residuals. The priors of all covariance matrices are non-informative
inverse-Wishart distributions (see, for instance, Box & Tiao, 1973).

5.2.4. Combined IRT Models for the Responses and the Missing Data Indi-
cator

In most analysis, it is assumed that the process causing the missing data can be
ignored (see Rubin, 1976). However, if there are unobserved factors that influence
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the realization of the missingness, ignorability does not hold and then the inferences
made using an IRT model ignoring the missing data can be severely biased (Bradlow
& Thomas, 1998; Holman & Glas, 2005). However, this bias can be removed
when the model for the responses is enhanced with an IRT model that serves a
selection model (see, for instance, O’Muircheartaigh, & Moustaki, 1999; Moustaki
& O’Muircheartaigh, 2000; Moustaki & Knott, 1999; Holman & Glas, 2005).

The combination of the model for the responsesX (which can either or both
be discrete responses denoted byY or continuous responses denoted byZ) and the
missing data indicatorsD proceeds analogously to the approach by Holman and Glas
(2005) adopted for modeling skipped items in a test. They consider two classes of
models: theMARandNONMARmodels. Define aN × K matrix D of missing data
indicators

dnk =


1 if a personn responds to an itemk

0 if otherwise.
. (5.6)

Let p(xn|dn, θn1,α1, β1) be some model for the observed response patternxn = (xn1,

..., xnk, ..., xnK), whereθn1, is a latent proficiency parameter, andα1 andβ1 are item
parameters. Further, letp(dn|θn0, α0, β0) be a model for the missing data indicator, for
which we take one of the IRT models for dichotomous responses above, The model
has latent person parametersθn0 and item parametersα0 and β0. Finally, g0(θn0)
andg1(θn1) are the prior densities of the latent person parameters. In the sequel, we
assume these densities to be standard normal.

Then, the posterior of the person parameters of respondentn is proportional to

p(xn|dn, θn1,α, β)p(dn|θn0, α0, β0)g0(θn0)g1(θn1). (5.7)

In (5.7), the latent variablesθn1 for the observed data andθn0 for the missing data
process are independent, so the posterior factors into two independent components:
one forxn and one fordn. Hence we can ignore the model for the likelihood of the
missing datap(dn|θn0, α0, β0)g0(θn0) and obtain estimates using

p(xn|dn, θn1,α1, β1)g1(θn1) (5.8)

only. The model given by (5.8) will be called theMARmodel.
A violation of ignorability is created if the latent variables for the observed

data and the missing data indicators,θn1 and θn0 are dependent. Hence the name
NONMARmodel. In the sequel, it will be assumed thatθn1 andθn0 have a multivari-
ate normal distribution with a covariance matrixΣ. To identify the latent scale, the
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mean of this distribution is set equal to zero. The posterior is proportional to

p(xn|dn, θn1,α1, β1)p(dn|θn0, α0, β0)g(θn0, θn1|Σ), (5.9)

whereg(θn0, θn1|Σ) is the prior density ofθn0 andθn1. If the off-diagonal elements of
Σ are non-zero, the complete model forxn anddn to obtain unbiased estimates of the
parameters has to be considered. Using simulation studies, Holman and Glas (2005)
showed that the bias in the estimates of the item parameters increases as a function
of the correlation betweenθn0 andθn1.

5.3. Bayesian Estimation

The procedure that will be presented is both an extension of the procedure for Bayesian
MCMC estimation for factor analysis models with continuous and polytomous data
by Shi and Lee (1998) and Béguin and Glas (2001) and of the Bayesian MCMC
procedure for the multilevel IRT model presented by Fox and Glas (2001, 2002,
2003).

5.3.1. Prior Distributions

The conjugate prior distribution for(µP,ΣP) is a normal-inverse-Wishart distribution
(see, for instance, Box & Tiao, 1973). With respect to the choice ofκ0, v0, µ0 andΛo,
a non-informative prior distribution is obtained ifκ0 → 0, v0 → −1 and |Λo| → 0.
These parameter values result in the multivariate version of Jeffrey’s prior density.
The item parameters are collected in a vectorξ with sub-vectorsξk, k = 1, ...,K. A
multivariate normal priorξk ∼ N(µI,ΣI) will be assumed.

5.3.2. Data Augmentation

A continuous responseznk needs no data augmentation step. Discrete responses are
mapped to a latent continuous responseznk in a number of data augmentation steps.
After this mapping, the MCMC algorithm does not distinguish between continuous
observed and latent responses. First, if a response is not observed, that is, ifdnk =

0 for a combination ofn andk, znk is randomly drawn from a normal distribution
φ(znk; ηnk,1), whereφ( . ; ηnk, 1) stands for the normal density with meanηnk and
standard deviation equal to one.
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The Graded Response Model

The data augmentation scheme for the graded response model, developed by Johnson
and Albert (1999), is a generalization of the scheme for dichotomous items proposed
by Albert (1992). We first broaden the definition of the item parameters withbk0 =

−∞ andbkm = ∞, so we haveηnk0 = −∞ andηkm = ∞. Then simulation is based on
the posterior

p(znk |ynk, ηnk) ∝
m∏

j=1

φ(znk; ηnk j, 1)ynk j

[
I (ηnk( j−1) < znk 6 ηnk j))

]
. (5.10)

Note that the factorynk j

[
I (ηnk( j−1) < znk 6 ηnk j))

]
is positive only if ynk j = 1 and

ηnk( j−1) < znk 6 ηnk j.

Singly Peaked Response Model

Since the singly peaked model can be viewed as a collapsed version of the graded
response model, we map the observed dichotomous response unto (0,1,2) using

P(Unk = 0 |Ynk = 0, ηnk,γk) ∝ 1− Φ(ηnk1)

P(Unk = 1 |Ynk = 1, ηnk,γk) = 1

P(Unk = 2 |Ynk = 0, ηnk,γk) ∝ Φ(ηnk2).

(5.11)

5.3.3. Posterior Simulation

The aim of the procedure is to simulate samples from the joint posterior distribution
of the parameters and the augmented data given the observed continuous dataz and
the discrete datay. This posterior is given by

p(ξ, θ,̃z,u, µ,Σ |y, z) = p(z, u |y ; ξ, θ,)p(θ | XP, βP,ΣP)p(ξ
∣∣∣XI, βI,ΣI )

p(β |WP, γ,T,ΣP )p(γ|T)p(ΣP)p(TP)

wherez are the observed responses andz̃ are the augmented latent responses. Sam-
ples from this posterior distribution are generated using the Gibbs sampler (Gelfand
& Smiths, 1990). The Gibbs sampler requires that the parameter vector is divided in
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a number of components, and each successive component is sampled from its con-
ditional distribution given sampled values for all other components. This sampling
scheme is repeated until the sampled values form stable posterior distributions.

1. Drawu andz conditional onθ, ξ,andy,

2. Drawθ conditional onz, ξ,ΣP, X, β,

3. Draw ξ conditional onz andθ,ΣI, µI,u andy,

4. Drawβp conditional onθp,Σ,T, γ,Wp,Xp,

5. DrawΣ conditional onλ,X, β

6. Drawγ conditional onW,T, β

7. DrawT conditional onB,W, γ.

The procedure thus amounts to iterative generation of parameter values using the
above steps. The details of the steps are given in the Appendix. To evaluate the
convergence of the procedure, multiple chains can be started from different points
to evaluate convergence by comparing the between- and within-sequence variance.
Another approach is to generate a single MCMC chain and to evaluate convergence
by dividing the chain into subchains and comparing between- and within-subchain
variance. For these and other technical details, see Gelman, Carlin, Stearn and Hall
(1995).

5.4. An Empirical Example

5.4.1. The Data

The methods presented above are illustrated with an analysis of a data set of Dutch
Central examinations. The data used in this study were collected by the Dutch
Inspection of Education. The data are a subset of the data of approximately 18-
year old students of pre-university schools that took their final examination in the
school year 1994/1995. The students chose an examination package that consisted
of 7 or 8 subjects. The analysis was restricted to 60 fairly common combinations of
examination subjects. The resulting data set consisted of the examination results of
6142 students. The examination scores were on a scale of 0 to 10, with two significant
digits after the decimal point.
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5.4.2. Impact of the Selection Model

First, the differences between the model without and with the selection model were
evaluated. For both models, the Gibbs sampler was run using 40,000 iterations.
To ensure convergence, multiple MCMC chains from different starting points were
generated and the between- and within-sequence variance were compared (see, for
instance, Gelman, Carlin, Stearn & Hall, 1995). Because the number of augmentation
variablesznk (n = 1, ..., 6142, k = 1, ..., 16) proved to cause storage problems, for
every iteration cycle of the MCMC algorithm a new sample of 2000 respondents was
uniformly drawn from the available 6142 respondents. Normal priors were used for
thea andb parameters. All prior means for non-fixeda parameters were set equal to
one; the prior mean for theb parameters was set equal to the negative of the grand
mean of all examination grades. The variances were set equal to 5.0, so the resulting
prior was quite vague. The covariance matrix had a non-informative prior.

Table 5.1 gives the estimates obtained without the selection model. The point
estimates reported are posterior expectations and posterior standard deviations. A
number of factor loadings is fixed to zero; they are the same loadings as fixed in the
previous chapters. The first two dimensions were identified by fixing the rows of
the topics German and Mathematics. Therefore, they can be labeled as language and
mathematics ability. The third dimension was identified as a dimension that related
to Economy but Dutch Language and History also had significant loadings on this
dimension. The estimatedb parameters are shown in the last column. Since the mean
of the ability distribution was scaled to zero, the opposite of theb parameters reflect
the average grades on the topics. Note that the average score on Mathematics was
lowest and the average score on Latin was highest. The estimated covariance matrix
and the associated correlation matrix are given at the bottom of the table. Note that
the Economics dimension correlated highly with the Mathematics dimension. The
other two correlations were only moderate.

In the next analysis, a model for the choice variablesdnk was invoked. A latent
variableθQ+1 was assumed to govern the choice of the examination subjects, with
the realizations of the choice variable defined by (5.4). If the students’ proficiency
level is highly correlated with the choice of examination subjects, thenθQ+1 will
be highly correlated withθ1, ..., θQ also. The dependence between the latent vari-
ables is modeled by assuming theθ1, ..., θQ+1 has a multivariate normal distribution.
The correlations betweenθQ+1 and the proficiency dimensionsθ1, ..., θQ describe the
extent to which the choice of an examination subject depends on the proficiency
level. So if, for example, the correlation betweenθ1 and θQ+1 is positive, a high
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Table 5.1: Bayesian estimates of the parameters of the factor model for the
examination scores (Starred entries are fixed)

Topic ak1 ak2 ak3 bk S e(ak1) S e(ak2) S e(ak3) S e(bk)
Dutch 0.19 0.08 0.48 -6.21 .052 .099 .078 .020
Latin 0.24 -0.02 0.10 -7.33 .104 .122 .123 .059
Greek 0.17 0.03 0.19 -6.90 .099 .127 .103 .055
French 1.11 0.00* 0.00* -6.83 .077 .039
German 1.00* 0.00* 0.00* -6.41 .034
English 1.05 0.00* 0.00* -6.43 .048 .021
History 0.44 0.18 0.58 -6.42 .058 .126 .128 .033
Geography 0.00* 1.10 0.00* -6.23 .129 .035
Appl.Math 0.00* 1.00* 0.00* -5.81 .022
Adv.Math -0.09 1.23 0.10 -5.99 .111 .119 .128 .036
Physics 0.00* 1.26 0.00* -6.11 .122 .033
Chemistry 0.00* 1.27 0.00* -6.69 .109 .038
Biology 0.00* 1.13 0.00* -6.51 .100 .035
Gen. Econ. 0.00* 0.00* 1.00* -6.11 .032
Bus. Econ. 0.00* 0.33 0.83 -6.19 .098 .096 .019
Arts 0.16 -0.01 0.11 -6.61 .178 .199 .188 .101
Covariance Matrix S e(σ∗1) S e(σ∗2) S e(σ∗3)
Language 0.806 .014
Mathematics 0.329 0.589 .018 .011
Economy 0.439 0.581 0.611 .018 .019 .012
Correlation Matrix
Language 1.000
Mathematics 0.477 1.000
Economy 0.626 0.968 1.000

level on proficiency dimensionθ1 is positively related with subjects that load high
on dimensionθQ+1. Further, the magnitude of the correlations betweenθ1, ..., θQ

andθQ+1 gives an indication of the extent to which the assumption of ignorability is
violated. If these correlations are close to zero, the choice behavior is not related
to proficiency, and the missing data are ignorable. If, on the other hand, these
correlations are substantial, the choice variable is highly related to the proficiencies
for the students. Since the students can only chose a limited number of subjects, it is
reasonable to assume that the probability of choosing a subject as a function of the
proficiency dimensionθQ+1 is singly peaked: Students will probably chose subjects
within a certain region of the proficiency dimensionθQ+1 and avoid subjects that are
too difficult or too easy. The too difficult subjects are avoided because of the risk
of failing the examination, and the too easy subjects are avoided because they do not
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Table 5.2: Bayesian estimates of the parameters of the factor model for
the examination scores enhanced with a selection model (Starred entries are

fixed)
Topic ak1 ak2 ak3 bk bk se(ak1) se(ak2) se(ak3) se(bk) se(bk)
Dutch 0.22 0.14 0.58 -6.20 – .051 .095 .085 .030
Latin 0.25 0.00 0.09 -7.01 -0.77 .108 .123 .123 .060 .071
Greek 0.20 0.04 0.20 -6.89 -1.09 .103 .128 .103 .057 .080
French 1.22 0.00* 0.00* -6.83 -0.77 .077 .039 .043
German 1.00* 0.00* 0.00* -6.42 -0.62 .034 .031
English 1.08 0.00* 0.00* -6.42 – .042 .026
History 0.55 0.18 0.57 -6.41 -0.19 .059 .127 .127 .033 .029
Geography 0.00* 1.11 0.00* -6.22 0.11 .129 .037 .039
Appl.Math 0.00* 1.00* 0.00* -5.82 0.01 .022 .029
Adv.Math -0.09 1.27 0.11 -6.06 0.50 .118 .126 .129 .039 .042
Physics 0.00* 1.28 0.00* -6.11 0.61 .122 .033 .039
Chemistry 0.00* 1.28 0.00* -6.70 0.80 .132 .043 .045
Biology 0.00* 1.14 0.00* -6.53 0.99 .111 .036 .039
Gen. Econ. 0.00* 0.00* 1.00* -6.11 -0.31 .032 .034
Bus. Econ. 0.00* 0.35 0.85 -6.22 -0.13 .097 .097 .019 .029
Arts 0.16 0.01 0.09 -6.66 0.50 .178 .202 .199 .103 .099
Covariance Matrix se(σ∗1) se(σ∗2) se(σ∗3) se(σ∗4)
Language 0.808 .015
Mathematics 0.333 0.600 .018 .014
Economy 0.445 0.584 0.619 .018 .019 .013
Choice 0.128 0.759 0.565 1.101 .011 .011 .011 .009
Correlation Matrix
Language 1.000
Mathematics 0.478 1.000
Economy 0.629 0.958 1.000
Choice 0.136 0.934 0.684 1.000

contribute to a package suited for the desired level of university study. An IRT choice
model that reflects this feature is given in (5.4).

The results of the analysis are displayed in Table 5.2. Note that the choice-
dimension had significant positive correlations with all proficiency dimensions. The
correlation with the Mathematics dimension was highest. For the choice dimension,
displaying the factor loadings is not very informative, since they were all equal to
one. Therefore, the average of the two subject parameters, that is,bk = (bk1 + bk2)/2
is displayed for all subjects in the last column labelledbk. The parametersbk can be
seen as estimates of the location of the subject on this fourth proficiency dimension.
Note that the parameters for Dutch and English cannot be estimated, because these
two examination subjects are obligatory, and so all the choice variablesdnk for these
examination subjects are structurally equal to one and the parameters related to these
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subjects cannot be estimated.
The interpretation of the mean parametersbk is as follows. The choice dimension

correlates positively with the three proficiency dimensions, and highest with the
Mathematics dimension. This dimension can be viewed as an overall proficiency
dimension, and the choice of subjects is assumed governed by this proficiency. Since
the “difficulty parameters”bk are estimates of the location of the subjects on the
fourth proficiency dimension, they represent the ordering of the examination subjects
on this dimension. That is, “difficult subjects” as Advanced Mathematics (bk =

0.50), Physics (bk = 0.61), Chemistry (bk = 0.80), and Biology (bk = 0.99) are
chosen by the more proficient students.

5.4.3. Variance Attributable to Schools

The next research question tackled was how much of the variance in the latent person
parameters is attributable to the schools. Therefore, the MCMC analysis of the
previous report was redone with a two-level model (without covariates) for the ability
parameters. That is, the overall covariance matrix was partitioned into a within
schools covariance matrixΣP and a between schools covariance matrixTP. The
Gibbs sampler was run using 40,000 iterations. The results are shown in Table 5.3.

The point estimates reported are posterior expectations (EAP) and posterior stan-
dard deviations (PSD). Note that the choice-dimension has significant positive corre-
lations with all proficiency dimensions. The correlation with the Science-dimension
is highest. For the choice-dimension, displaying the factor loadings is little infor-
mative, since they are all equal to one. Therefore, the average of the two subject
parameters, that is,bk = (bk1 + bk2)/2 are displayed for all subjects in the last column
labelledbk. The parametersbk can be seen as an estimate of the location of the subject
on this fourth proficiency dimension. Note that the parameters for Dutch and English
cannot be estimated, because these two examination subjects are obligatory and so
all the choice variablesdnk for these examination subjects are structurally equal to
one and the parameters related to these subjects cannot be estimated.

The within schools covariance matrixΣP and the between schools covariance
matrixTP, and the associated correlation matricesR(ΣP) andR(TP) are given in the
last panels of Table 5.3. The question regarding the proportion of variance in the la-
tent person parameters attributable to the schools could, in principle, be addressed by
using these variance estimates to compute intra class correlation coefficients (ICCs,
see, for instance Bryk and Raudenbush, 1992). However, to obtain some measure of
the credibility of the ICCs, it is more convenient to sample their values during the



90 5. Bayesian Methods for IRT Models for Discrete and Continuous Responses

Table 5.3: Bayesian estimates of parameters of examination topics (Starred
entries are fixed)

Topic Estimates Standard errors
ak1 ak2 ak3 bk bk ak1 ak2 ak3 bk bk

Dutch 0.20 0.16 0.60 -6.21 – .050 .095 .099 .031
Latin 0.24 0.00 0.09 -7.02 -0.77 .109 .123 .127 .060 .072
Greek 0.20 0.04 0.21 -6.89 -1.00 .101 .128 .111 .057 .080
French 1.20 0.00* 0.00* -6.83 -0.76 .077 .039 .044
German 1.00* 0.00* 0.00* -6.52 -0.69 .032 .029
English 1.08 0.00* 0.00* -6.33 – .042 .026
History 0.45 0.12 0.60 -6.81 -0.22 .059 .127 .128 .033 .029
Geography 0.00* 1.09 0.00* -6.23 0.12 .129 .037 .039
Appl.Math. 0.00* 1.00* 0.00* -5.91 0.05 .022 .029
Adv.Math -0.11 1.33 0.11 -6.06 0.55 .118 .126 .131 .039 .042
Physics 0.00* 1.38 0.00* -6.14 0.63 .122 .033 .039
Chemistry 0.00* 1.36 0.00* -6.71 0.79 .130 .042 .045
Biology 0.00* 1.29 0.00* -6.53 0.98 .109 .036 .039
Gen. Econ. 0.00* 0.00* 1.00* -6.22 -0.44 .032 .034
Bus. Econ. 0.00* 0.35 0.99 -6.19 -0.22 .097 .097 .019 .029
Arts 0.15 0.00 0.10 -6.66 0.47 .180 .209 .201 .103 .099
Covariance MatrixΣP σ∗1 σ∗2 σ∗3 σ∗4
Language 0.711 .013
Science 0.226 0.610 .018 .015
Economy 0.297 0.456 0.530 .018 .018 .013
Choice 0.026 0.634 0.425 1.044 .013 .013 .014 .011
Covariance MatrixTP τ∗1 τ∗2 τ∗3 τ∗4
Language 0.098 .025
Science 0.008 0.006 .027 .034
Economy 0.049 0.020 0.102 .018 .041 .036
Choice 0.003 0.018 0.049 0.077 .040 .036 .038 .038
Correlation MatrixR(ΣP) Correlation MatrixR(TP)
Language 1.000 1.000
Science 0.343 1.000 0.339 1.000
Economy 0.484 0.803 1.000 0.496 0.816 1.000
Choice 0.031 0.795 0.571 1.000 0.030 0.826 0.555 1.000

MCMC procedure and to compute their EAPs and PSDs. The ICCs were computed
as the variance ratio

ρ =
τ2

σ2 + τ2

whereσ2 andτ2 are the appropriate diagonal elements fromΣP andTP, respectively.
The posterior means and standard deviations of the six ICCs are shown in Table 5.4.
Note that the ICCs for the Language and Economy dimensions exceed 10%. On the
other hand, the ICC for the Science dimension is very close to zero.
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Table 5.4: Bayesian estimates of intraclass correlationsρ

Topic EAP PSD
Language .124 .010
Science .008 .009
Economy .159 .011
Choice .071 .015

5.4.4. Variance Attributable to Gender

The second research question concerned the proportion of variance attributable to
gender. The answer this question, a second analysis was carried out with gender
as a predictor for each of the four ability dimensions. As above, the question was
addressed for all dimensions. The proportion explained variance was computed as

δ =
σ2

Model 0− σ2
Model 1

σ2
Model 0

,

whereσ2
Model 0 andσ2

Model 1 are the EAPs of the appropriate diagonal elements ofΣP
obtained in the analysis without and with gender as a covariate, respectively. The
results are shown in Table 5.3. Note that an estimate of the reliability of the indices
is now lacking. The reason is that the indices are now computed from two separate
analysis and not sampled in a single analysis. The computation of a measure for the
reliability of the estimate ofδ remains a point for further research. The results are
displayed in the second column of Table 5.5.

Table 5.5: Bayesian estimates of gender effect β and proportion variance
explainedδ

Topic EAPδ EAPβ PSDβ
Language .081 .121 .014
Science .071 -.007 .014
Economy .006 .001 .014
Choice .032 -.040 .013

Note that the proportions of variance explained by gender are highest for the
Language and Science dimensions. Further, the EAP estimates and the PSDs of the
regression coefficient for gender are displayed in the last two columns. Male gender
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was coded zero, female gender was coded one. So a positive value ofβ reflects a
higher ability level for the females, while a negative value is indicates the opposite.
Note the average for the Language dimension is higher for the females, while their
average on the overall ability dimension (the choice dimension) is lower.

5.5. Discussion

The problems addressed in this article were related to Bayesian estimation methods
for multidimensional IRT models for combined discrete and continuous data. The
methods are illustrated with an analysis of a data set of Dutch Central Examinations.
The interaction between the students’ pattern and level of proficiency on one hand and
their choice of examination subjects on the other hand complicates the comparison
between the grades obtained on these examinations. The choice of subjects causes a
violation of the ignorability principle for missing data underlying most inferences in
IRT. The multidimensional IRT model for the responses was therefore expanded with
a model for the choice of the examination subjects.

A three-factor model and a four factor model where the fourth factor pertained to
a choice model were evaluated and compared. These models produced very similar
results with respect to the factor structure, the difficulty parameters of the subjects and
the covariance matrix of the proficiency dimensions. Only the difficulty parameter
of the subject Latin went down substantially. The choice-dimension had significant
positive correlations with all proficiency dimensions. So the choice of the subjects
by the students is clearly related to their proficiency level. This also means that the
choice-dimension can be viewed as an overall proficiency dimension. The correlation
of the choice dimension with the Science dimension was highest. So this overall
proficiency dimensions depends mostly on the Science-dimension.

MCMC analysis of two-level factor models (with and without covariates) were
presented to show how to evaluate the amount of variance in the latent person param-
eters attributable to the schools. This proportion was evaluated by intra class corre-
lation coefficients (ICC). The ICCs for the Language and Economy dimensions were
significant and exceeded 0.10. Also the ICC for the choice-dimension was significant.
However, the ICC for the Science dimension is very close to zero. The conclusion is
that differences between schools are important for Language and Economy subjects,
but not for Science.

The analysis with gender as a predictor for each of the four latent dimensions was
carried out to estimate the effect of Gender. The effect of Gender was highest for the
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Language and Science dimensions. The Gender effect for the Language dimension
is positive for the females. This is in accordance with the common opinion that girls
are better in language. On the other hand, the Gender effect for females was negative
for the choice-dimension. This implies on one hand that girls choose slightly easier
subjects, and that the overall proficiency of the girls is slightly lower.

Overall, serious implications of violation of ignorability for comparing the diffi-
culty of subjects did not occur. However the fact that the model for proficiency should
at least be multidimensional implies that one should be cautious when publishing
school performance results to provide parents and their children with information for
their school choice.
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Appendix

5.A. The MCMC Algorithm in Detail

Step 1
This step is the data augmentation step which boils down to sampling from the

distributions (5.10) and (5.11).
Step 2
To draw from the conditional distribution ofθ, an orthogonally standardized

ability variableθo is defined. So the elements ofθo
n = (θo

n1, ...θ
o
nQ)′ have independent

standard normal distributions. LetL be the Cholesky decomposition ofΣP, that is,
ΣP = LL ′. Defineθo

n = L−1(θn−µ). Now ηnk can be written as

ηnk =

Q∑

q=1

(akqθnq) − bk

=

Q∑

q=1

(akq

Q∑

h=1

Lhqθ
o
nq + µq) − bk,

or, in matrix notation,

ηn = ALL −1(θn−µ + µ) − b = A(Lθo
n + µ) − b,

with ηn andb vectors of lengthk, θn, θ
o
n andµ vectors of lengthQ andA a k × Q

matrix with entriesakq. The ability parametersθo
n have a posterior density given by

p(θn |ξ, z, y,w ) ∝ φ(θo
n; 0, I )

k∏

k=1

φ(znk; ηnk,1).

This entails thatzn + b − Aµ = Bθo
n + εn, whereB = AL andεn is a vector of error

termsεnk, which are i.i.d.N(0,1). It then follows that

θo
n ∼ N

(
(I + Σ−1)−1Σ−1θ̂o

n, (I + Σ−1)−1
)
,

with θ̂o
n the common least squares estimateθ̂o

n = (B′B)−1B′(zn + b−Aµ) andΣ =

(B′B)−1. Now θn can be obtained by the transformationLθo
n + µ = θn.
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Step 3a: Samplea and/or b
Draw the item parametersξk= (ak,bk), or, in case of the graded response model,
ξk= (ak). In the latter case, theb parameters are drawn in Step 3c. Consider a multi-
variate normal prior for the item parametersξk with mean,µξ0 = (µa1, ...µaQ, µb)′ and
variance,Σξ0. DefineX as an × (Q + 1) matrix with rows(θn1, ..., θnq, ..., θnQ, −1).
Conditional onθ, zk = (z1k, ..., znk)′ satisfies the linear model

zk = Xξk + εk,

whereεk = (ε1k, ..., εnk, ..., εnk)′ and theεnk are i.i.d.N(0,1). The likelihood function
of ξ is of normal form with mean̂ξk = (X′X)−1X′zk and variancev = (X′X)−1.

Combining this with the normal distributed priors, one obtains

ξk |θ, z, y ∼ N(µξk, (Σ
−1
ξ0 + X′X)−1),

whereµξk = (Σ−1
ξ0 + X′X)−1(Σ−1

ξ0µξ0 + X′zk).

Step 3b: Modification for Fixeda Parameters
Define then × (Q + 1) matricesX1 andX2. X1 has entries equal to the analogous
entries ofX, except for the columns associated with the fixed item parameters. The
latter entries are equal to zero. In the same manner,X2 has entries equal to the
corresponding entries ofX, except for the columns associated with the free item pa-
rameters. Also, here, the latter are equal to zero. Note thatX = X1+X2. Conditional
on θ, zk = (z1k, ..., znk)′ satisfies the linear model

z∗k = zk − X1ξk = X2ξk + εk,

whereεk = (ε1k, ..., εnk, ..., εnk)′ and theεnk are i.i.d. N(0, 1). Combining this with
the normal distributed priors, one obtains

ξk |θ, z, y ∼ N(µξk, (Σ
−1
ξ0 + X′2X2)−1),

whereµξk = (Σ−1
ξ0 + X′2X2)−1(Σ−1

ξ0µξ0 + XT
2 z∗k). Note that the prior covarianceΣ−1

ξ0

assures thatΣ−1
ξ0 + X′2X2 is invertible.

Step 3c: Graded Response Model
For the graded response model, thebparameters are drawn using a hybrid Metropolis-
Hastings sampler outlined by Johnson and Albert (1999).
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• SetσMH = 0.05/m. This value can be adjusted if the acceptance rate is too
low.

• For j = 1, ...,m− 1, sample candidatesδk j from N(bk j, σ
2
MH) truncated to the

interval(δk( j−1),bk( j+1)).

• Compute the acceptance ratio

R =
∏

n

∏

j


Φ

(
ηnk j

)
− Φ

(
ηnk( j+1)

)

Φ
(
a′kθn − δk j

)
− Φ

(
a′kθn − δk( j−1)

)

ynk j

⊗
∏

j

Φ
(
(bk( j+1) − bk j)/σMH

)
− Φ

(
(bk( j−1) − bk j)/σMH

)

Φ
(
(bk( j+1) − bk j)/σMH

)
− Φ

(
(bk( j−1) − bk j)/σMH

) .

• Setb = δ with probabilityR, otherwise, keep the previous draw ofb.

Step 4
Sampling ofβp, p = 1, ...,P. Define

• βp as aS Q-dimensional vector of the elementsβspq,

• θp as aNpQ-dimensional vector of the elementsθnpq, whereNp is the number
of observations in the sample from thep-th population,

• γ as aS QT-dimensional vector of the elementsγsqt,

• Wpsqas aT-dimensional vector of the elementswptspandWp = {Wpsq}⊗ IS Q.
Note thatWp is aS Q× S QTmatrix,

• X∗p = {Xp} ⊗ I Q, with Xp a matrix of the elements{xnps}. Note thatXp is a
NpQ× S Qmatrix.

Given all other parameters, the conditional distribution ofβ j is normal, that is

βp | θp,Σ,T, γ,Wp,Xp ∼ N
(

Φ
[
X∗′p θp+T−1Wpγ

]
, Φ

)
,

with Φ = (X∗′p X∗p+T−1)−1.
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Step 5
Sampling ofΣ. Define the matrix of residualsS =

∑
p(θnp − BpXnp)(θnp − BpXnp)′,

with
θnp a Q-vector of the elementsθnpq,
Xpq aS-dimensional vector of the elementsxnps,

Bp a Q× S matrix of the elementsβpsq.
Then the conditional distribution ofΣ is Inverse-Wishart:

Σ | λ,X, β ∼ Inv-W(N,S−1).

Step 6
Sampling ofγ.

γ |W,T, β ∼ N

 Ψ
∑

p

W′
pT−1βp , Ψ



whereΨ =
∑

p W′
pT−1Wp

−1.

Step 7

Sampling ofT. Define the matrix of residualsS = 1
P

∑
p(βp−Wpγ)(βp−Wpγ)′. Then

the conditional distribution ofT is Inverse-Wishart

T | B,W, γ ∼ Inv-W(P,S−1).





Summary

In item response theory (IRT), mathematical models are applied to analyze data from
tests and questionnaires used to measure abilities, proficiency, personality traits and
attitudes. This thesis is concerned with comparison of subjects, students and schools
based on average examination grades using IRT. The difficulty of such comparisons
is caused by student’s free choice of examination subjects. That means, students only
sit examinations in subjects they have chosen themselves. However, if the students
have different examination packages, their grades are probably not comparable. The
main problem with using examination grades, or grade point averages (GPAs) is the
incorrect assumption that all course grades mean essentially the same thing. How-
ever, there is always substantial variation among topics, courses, teachers, instructors
and grading standards, so GPAs are not automatically comparable.

In Chapter 2 the standardization over subjects was achieved by using both the
well known Kelly method (Kelly, 1976) and IRT models. Grades may either be
represented as continuous data or as discrete data. Both representations were used
and compared. IRT models are mathematical functions that specify the probability of
a response of a student to an item in terms of person and item parameters. Therefore,
using IRT models with grades as observations allows for separating the effect of the
level of the students and the difficulty of the examination subjects. The generalized
partial credit model (Muraki, 1992) was used to scale the discrete categorical data.
A special IRT model for continuous responses (Mellenbergh,1994) was used for the
continuous case. In general this model is equivalent with a factor analysis model.
First, a unidimensional representation for proficiency was used. The results obtained
using unidimensional IRT models were compared with the results obtained using
Kelly’s algorithm. Kelly’s method and unidimensional IRT methods showed very
similar results, both for continuous and discrete grades. The correlation of the rank
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order of the estimates of the difficulty of the examination subjects was very high.
However, it is not a-priori plausible that the proficiency structure assessed by the
examinations is unidimensional. Therefore, as an alternative three-dimensional IRT
models with a simple structure where each subject loads on one dimension only, were
considered. The results of the three factor models for categorical and continuous
grades were again very similar. Finally, a Multilevel model was used to estimate the
variance in grades attributable to the schools. The overall conclusion was that the
impact of the schools on the outcomes was not very large.

In Chapter 3, we return to the discrete response format and apply the uni- and
multi-dimensional generalized partial credit further. For the analysis using the unidi-
mensional model, the sample of students was partitioned into a group with a language-
oriented package, a group with a science-oriented package and a group of the other
students. Using this partition, it could be shown that the results in the groups were
highly implausible. For instance, the implausible result of the high expected grades
in Mathematics and Science for the language oriented students. Therefore, it was
concluded that the unidimensional model did not fit the data. Next, a model was
considered with a multidimensional representation of the proficiency of the students,
where, contrary to the previous chapter, each subject could load on more than one
dimension. The three-dimensional IRT model had a substantially better fit than the
unidimensional IRT model and the implausible result of the high expected grades
in Mathematics and Science for the language oriented students vanished. However,
also this model was not accepted unconditionally, because it is not a-priori plausible
that the examination subjects that were not chosen (the missing data) are missing at
random. It was considered that the proficiency of students affected the pattern of
the missing data in such a way that this might bias the estimates of the parameters
of the examination subjects. To remove this bias, a four-dimensional IRT model
was introduced, where the first three dimensions are related to the observed grades,
while the fourth dimension is related to the choice variables. This model fitted the
data significantly better than the three-dimensional model. Still, the expected grades
computed using the two models were very close.

A testing procedure for IRT models for continuous responses (Mellenbergh, 1994;
Moustaki, 1996; Skrondal and Rabe-Hesketh, 2004) was developed in the Chapter 4.
A method for testing model fit was proposed in the framework of marginal maximum
likelihood estimation. The fit to the model is evaluated using the Lagrange multiplier
tests. The tests are based on residuals, that is, differences between observed and
expected mean scores, that support an appraisal of the seriousness of the model
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violation. The tests focus on the assumed form of the response functions, differential
item functioning, local stochastic independence and the factor structure underlying
the responses. The tests are illustrated with an example of the analysis of data from
Central Examinations in Secondary Education, but also the simulation studies for the
Type I error rate and power were presented.

In all these previous chapters, the studies have been done in the framework of
marginal maximum likelihood. As an alternative, a Bayesian framework is consid-
ered in Chapter 5. A Bayesian estimation method using a Markov chain Monte Carlo
method was developed that can be used to estimate the parameters for models for
combined discrete and continuous data. To illustrate these methods, again the data
set of Dutch Central examinations was used. The Multidimensional IRT models with
and without a selection model for the choice variables were presented, evaluated
and compared. These models produced results that were very similar to the results
obtained in previous chapters. This is, the choice-dimension had significant positive
correlations with all proficiency dimensions, and highest with Mathematics dimen-
sion. So the choice of subjects is governed by an overall proficiency dimension.
Next, an MCMC analysis for two-level models (with and without covariates) for
the proficiency parameters was performed to show how to estimate the amount of
variance in the latent person parameters is attributable to the schools. That was done
using the intra-class correlation (ICC) coefficients. The results of this analysis show
that ICCs for the Language and Economy dimensions were significant and exceed
0.10. So the differences between schools are more important for the Language and
Economy subjects. As another example of the use of the model, an analysis with
Gender as a predictor for each of the four ability dimensions was carried out to
estimate the proportion of variance attributable to Gender. The impact of Gender was
the highest for the Language and Science dimensions. The effect on the Language
dimension was positive for the females, while the effect of female Gender on the
choice dimension was negative.

The final conclusions are the following: (1) proficiency on examinations is mul-
tidimensional. The implication is that one should be rather cautious when publishing
school performance results to provide parents and their children with information
for their school choice and when defining variables for school-effectiveness research.
(2) Tools were developed for detecting violations of ignorability. Though no serious
violations were found in the present study, the tools developed here may prove their
importance in future research in educational science and social science in general.





Samenvatting

Item response theorie (IRT) modellen zijn statistische modellen die worden toegepast
voor het analyseren van data van toetsen en vragenlijsten die gebruikt worden voor
het meten van vaardigheden, persoonlijkheidskenmerken en attituden. Dit proef-
schrift houdt zich bezig met het vergelijken van examenvakken, leerlingen en sc-
holen met behulp van IRT. Het probleem bij die vergelijking is dat leerlingen hun
examenvakken vrij kunnen kiezen. Leerlingen doen dus alleen examen in vakken
die ze zelf gekozen hebben. Hun gemiddelde examenscores zijn waarschijnlijk niet
vergelijkbaar omdat ze een verschillend vakkenpakket hebben. Het belangrijkste
probleem bij zo’n vergelijking van gemiddelde scores is de onjuiste veronderstelling
dat alle examenvakken even moeilijk zijn. In zijn algemeenheid is er echter altijd een
substantiele variatie in de moeilijkheid van onderwerpen en vakken, en de strengheid
van beoordelingen en normering waardoor gemiddelden niet onder meer vergelijk-
baar zijn.

Voor het evalueren van methoden voor de vergelijking van scores werden in alle
hoofdstukken van dit proefschrift dezelfde data gebruikt. De data waren van het
Centraal Schriftelijk examen voor het VWO uit 1995.

In Hoofdstuk 2 wordt een standaardisatie van scores beschreven met de bekende
methode van Kelly (Kelly, 1976) en met behulp van IRT modellen. Beide benaderin-
gen werden vergeleken. De scores kunnen opgevat worden als scores op een continue
schaal en als discrete scores. IRT modellen zijn wiskundige functies die de kans op
een score van een leerling op een vak formuleren als een functie van persoonsparam-
eters en itemparameters (c.q. parameters geassocieerd met de vakken). Daardoor zijn
de effecten van de moeilijkheid van de vakken en de vaardigheid van de leerlingen
op de geobserveerde scores te scheiden. Het gegeneraliseerde partial credit model
(Muraki, 1992) werd gebruikt voor het analyseren van de discrete scores. Een IRT
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model dat equivalent is aan een factor analyse model (Mellenbergh, 1994) werd
gebruikt voor het analyseren van de continue scores. Als eerste werd een model
met een een-dimensioneel vaardigheidscontinuum gebruikt. De resultaten van deze
een-dimensionele IRT analyses werden vergeleken met de resultaten van de methode
van Kelly. De resultaten van beide benaderingen waren vergelijkbaar, zowel voor
de discrete als voor de continue interpretatie van de scores. De correlatie tussen
de volgordes van de schattingen van de moeilijkheidsgraad van de examenvakken
was zeer hoog. Het is echter niet a-priori voor de hand liggend dat de vaardigheden
die nodig zijn voor de verschillende examenvakken een-dimensioneel zijn. Daarom
werd ook een drie-dimensioneel IRT model gebruikt, waarbij drie clusters van vakken
betrekking hadden op drie specifieke vaardigheidsdimensies. Opnieuw waren de
resultaten voor zowel de discrete als voor de continue interpretatie van de scores
vergelijkbaar.

In Hoofdstuk 3 houden we ons alleen bezig met de discrete interpretatie van
de scores en passen we opnieuw het een-dimensonele en het multi-dimensionele
gegeneraliseerde partial credit model toe. Voor de analyses met het uni-dimensionele
model werd de steekproef van examendata opgesplitst in leerlingen met een taalge-
orienteerd pakket, leerlingen met een op wis- en natuurkunde georienteerd pakket en
een groep van de overige leerlingen. Door gebruik te maken van deze opsplitsing kon
worden aangetoond dat de resultaten van het uni-dimensionele IRT model bijzonder
onwaarschijnlijk waren. Als voorbeeld noemen we de hoge schatting van de scores
op wiskunde en natuurkunde voor de leerlingen met een taalgeorienteerd pakket.
Daarom werd geconcludeerd dat een een-dimensioneel model niet bij de data paste.
Daarna werd een multidimensioneel IRT model geschat. In tegenstelling tot het
vorige hoofdstuk werd hier een model gebruikt waarbij vakken op meerdere dimen-
sies betrekking konden hebben. Dit drie-dimensionele IRT model paste veel beter
bij de data en de onwaarschijnlijke resultaten zoals de hoge schatting van de scores
op wiskunde en natuurkunde voor de leerlingen met een taalgeorienteerd pakket
verdwenen. Dit model kan echter ook niet zonder meer geaccepteerd worden, omdat
het niet a-priori vaststaat dat de scores op de niet-gekozen vakken, die opgevat kunnen
worden als ontbrekende gegevens, "missing-at-random" zijn. Daarom werd de veron-
derstelling geanalyseerd dat de vaardigheid van de leerlingen het keuzeproces op een
zodanige manier beinvloedde dat de schatting van de moeilijkheidsgraad van de exa-
mens onzuiver was. Om deze onzuiverheid te corrigeren werd een vier-dimensioneel
IRT model gebruikt, waarbij de eerste drie dimensies vaardigheidsdimensies waren
en waarbij de vierde dimensie het keuzeproces representeerde. Dit model paste
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significant beter bij de data dan het drie-dimensionele model. De schattingen van
de verwachte scores onder beide modellen waren echter bijna gelijk.

In Hoofdstuk 4 werd een methode voor de evaluatie van modelpassing voor het
IRT model voor continue responsies (Mellenbergh, 1994; Moustaki, 1996; Skro-
ndal and Rabe-Hesketh, 2004) ontwikkeld. De methode werd ontwikkeld in de
context van marginale grootste-aannemelijkheidsschatting. De modelpassing werd
geevalueerd met Lagrange multiplier toetsen. De toetsen zijn gebaseerd op residuen,
i.e., de verschillen tussen geobserveerde en verwachte gemiddelde scores. Deze
verschillen maken het mogelijk de ernst van een modelovertreding te beoordelen. De
toetsen zijn gericht op de veronderstelde vorm van de response functie, niet gemod-
elleerde systematische verschillen in de scores tussen groepen (Engels: differential
item functioning), de veronderstelling van locale stochastische onafhankelijkheid, en
de structuur van de multidimensionele vaardigheden, c.q. de factorstructuur. De
methoden worden geillustreerd met een analyse van de VWO examendata, maar ook
met simulatiestudies naar het onderscheidend vermogen en de kans op Type I fouten
van de toetsen.

Alle analyses in de tot nu toe beschreven hoofdstukken werden uitgevoerd met
marginale grootste-aannemelijkheids-schattingsmethoden. Het alternatief van Bayesi-
aanse statistiek wordt onderzocht in Hoofdstuk 5. Er wordt een Bayesiaanse schat-
tingsmethode ontwikkeld die gebaseerd is op een Markov chain Monte Carlo (MCMC)
rekenmethode. De methode kan gebruikt worden voor een combinatie van discrete
en continue scores. De methode wordt opnieuw geillustreerd met een analyse van de
VWO examendata. Multidimensionale modellen zonder en met een additioneel se-
lectiemodel voor de keuzevariabelen werden vergeleken. De resultaten waren vergeli-
jkbaar met de resultaten in de vorige hoofdstukken. Opnieuw had de keuzedimensie
significante positieve correlaties met de vaardigheidsdimensie, en de correlatie was
het hoogst met de vaardigheidsdimensie die gerelateerd was aan wiskunde en natu-
urkunde. Daaruit kan geconcludeerd worden dat de keuzen gestuurd worden door
de vaardigheid van de leerlingen. Hierna werd een MCMC analyse met een twee-
niveau model uitgevoerd om de hoeveelheid variantie in de vaardigheidsparameters,
die toe te schrijven was aan de scholen waarin de leerlingen zaten te schatten. De
proportie variantie van de scholen werd uitgedrukt in een intra-klasse correlatie co-
efficient (ICC). De resultaten lieten zien dat de ICC voor de taaldimensie en voor de
economiedimensie significant van nul verschilden; ze waren groter dan 0.10. Een
tweede voorbeeld van toepassing van de methode was een schatting van het effect
van het geslacht van de leerlingen op de vier vaardigheidsdimensies. Het effect van
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geslacht was het hoogste voor de taaldimensie en voor de dimensie gerelateerd aan
wiskunde en natuurkunde. Het effect op de taaldimensie was positief voor de meisjes
en het effect op de dimensie gerelateerd aan wiskunde en natuurkunde was positief
voor de jongens.

De eindconclusies van dit onderzoek zijn de volgende. (1) De vaardigheidsstruc-
tuur waarop de examens een beroep doen is multidimensioneel. De implicatie hiervan
is dat men erg terughoudend moet zijn met het publiceren van gemiddelde schoolre-
sultaten ter informatie van scholen, leerlingen en ouders en met het definieren van
variabelen in schooleffectiviteitsonderzoek. (2) In dit proefschrift werden statistische
methoden ontwikkeld voor het evalueren van schending van de aanname dat on-
volledige data niet tot vertekeningen in analyses leiden. Hoewel in de huidige studie
geen ernstige schendingen werden gevonden, kunnen de modellen, die voorgesteld
zijn, in de toekomst ongetwijfeld hun nut hebben voor onderwijskundig onderzoek
en sociaal wetenschappelijk onderzoek in zijn algemeenheid.
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